SJ.IT.N Vol .2 (2014) 50

Available at: www.sabauni.net/ojs

S.J.I.T.N
. Saba Journal of
Information Technology

and Networking

PALXSS: CLIENT SIDE SECURE TOOL TO DETECT XSS ATTACKS

Tawfiq S. Barhoom *, Mohammed H. Abu Hamada

Islamic University Gaza, Palestinian Territory, Occupied

Article info

Article history: Accepted
May ,2014

Keywords:

Cross-Site Scripting
Malicious script codes
Client side

Abstract

Cross-Site Scripting is one of the main attacks of many Web-based services.
Since Web browsers support the execution of scripting commands
embedded in the retrieved content, Attacker can gain this feature
maliciously to violate the client security such as confidentiality. The public
sites (i.e. social network) provide the attacker with ability to post there
malicious code into a context which in the future to be shown to other
participants. Detecting these malicious script codes is necessary for client
side; the detection can be done by using detection tools used at client side.
This paper describes the overall problem and elaborates on the possibilities
to solve the problem with actions at client side to reduce the danger of
Cross-Site Scripting attacks. In this work a new secure tool is developed
using python language, which called PalXSS, two factors are used to
evaluate it: performance and accuracy. The results show the accuracy of
PalXSS tool is 90.24% which satisfies the users need compared with other

tools.

* Corresponding author: Dr. Tawfig S. Barhoom.

E-mail address: tbarhoom@iugaza.edu.ps

© 2014 Saba Journal of Information Technology and Networking,
Published by Saba University. All Rights Reserved.

S I

}J;”/

SJ.LT.N Vol .2 (2014)

Introduction

Social networks, such as Facebook and
MySpace, blogs and micro-blogs, such as
Twitter, and other content providing services
that are built on users’ collaboration, such as
YouTube and Flickr, are considered the killer
applications of the last few years [1]. Also,
everything has two sides. On the opposite side,
these dynamic websites also provide a good
platform for hackers to inject malicious code,
as well. If the code is executed behind the web
browser, it changes the web page according to
the code automatically. Therefore, a lot of
famous websites were injected with malicious
code by hackers and a lot of visitors were
attacked. Moreover, owing to the extensive
spread of Web 2.0 and each user’s blog can be
shared with his/her friends as well. So, if one
blog has been injected with malicious code, all
the visitors of the blogger’s friends will be
infected and constantly infect their friends.
Therefore, the speed of spreading is even
quicker than previously. Eventually, the
website provider will lose a lot of money and

its reputation will be damaged, as well [2].

51

Cross-site scripting (XSS) attack method was
first discussed in Computer Emergency
Response Team (CERT) advisory back in 2000
[3]. But, even today cross-site scripting is one
of the most common vulnerabilities in web
applications; it has a widespread vulnerability
in Web applications and was ranked first in
OWASP Top Ten report 2007 and second in
OWASP Top Ten report 2010 [4]. It happens
as a result of data received from a malicious
person and then sent to third parties. Systems
that receive data from users and display it on
other users' browsers are very vulnerable to an
XSS attack. Wikis, forums, chats, web mail -
are all good examples of applications most
susceptible to XSS. This type of vulnerability
allow hackers to inject the code into the output
application of web page which will be sent to a
visitor’s web browser and then, the code which
was injected will execute automatically or steal
the sensitive information from the visits input.
This code injection, which is similar to SQL

Injection in Web Application Security,

s Adtacker's Trusted
el Saerwer Saernvaernr
1 - Uhsar wisits thae
attackers Weaeb site
Syt ey e e STt —
2 User clicks on a malicious ink amnd am HT |l
reqgqu=st containing JavaScoripl] codes is sent o
the trusted saernver
T T SNSRIy ey TE R~ N
3 The rusted saernver returms jan Srror message containing
fthe nameae of the resource (i e the JavaScript code)
e T SV N Y W I PN SE S Sy Sl TSR Y VO S R Y
< The JavaScript cods is exegecuted and the users
cookise associated with the tristed sernver is sent
o the attacker's ssrver
—_———————— — — — —

SJ.LT.N Vol .2 (2014)

can be used in three different ways namely
“Persistent XSS, “Non-Persistent XSS and
“Dom- based XSS” Fig. l.
Vulnerabilities in Web applications can be
discovered in various ways. In the black-box
approach the Web Vulnerability Scanner has
no knowledge about internal operation and
operates only on the interfaces that can be
accessed from the outside. The internals of the
application are kept secret, source code cannot
be accessed and most of the time, the Web
Vulnerability Scanner doesn't even know
which type of Web server the application runs
on. All information about the Web application
must be gathered with the help of tools such as
Web Vulnerability Scanners or manually by
inspecting the HTTP responses and by trying
different input values to understand the
behavior of the Web application [6]. In white-
box testing [6], the opposite is true. The Web
Vulnerability Scanner has access to the internal
workings of the Web application and every
request can be traced. All necessary
information is then available and can even
access the source code to find vulnerabilities.
The internal mechanisms of the Web
application can be traced in detail using

debugging tools.

In the scope of this work, only black-box
techniques are investigated as black-box testing
is typically the case for most Web
Vulnerability Scanners testers and also for

attackers with malicious intent. To find the

52

vulnerability, python language was used which
is simple language, an easy to learn, powerful
programming language and free and open
source language. It has efficient high-level data
structures and a simple but effective approach
to object-oriented programming. Python's
elegant syntax and dynamic typing, together
with its interpreted nature, make it an ideal
language for scripting and rapid application
development in many areas on most platforms

[7].
Related Works

There are largely two distinct
countermeasures for XSS prevention at server
side: Input filtering and output sanitation. Input
filtering describes the process of validating all
incoming data. The protection approach
implemented by these filters relies on removing
predefined keywords, such as <script,
JavaScript, or document. Output sanitation is
employed, certain characters, such as <, ", or ’,
are HTML encoded before user-supplied data
is inserted into the outgoing HTML. As long as
all untrusted data is “disarmed” this way, XSS
can be prevented. Both of the above protections
are known to frequently fail [8], either through
erroneous implementation, or because they are

not applied to the complete set of user-supplied

data. Client side solution acts as a web proxy

to mitigate Cross Site Scripting attack which

SJ.LT.N Vol .2 (2014)

manually generates rules to mitigate Cross Site
Scripting attempts. Client side solution
effectively protect against information leakage
from the user’s environment. However, none of
the solutions satisfy the need of the client side.

There are several client-side solutions.

Hallaraker et al. [9] proposed a strictly client-
side mechanism for detecting malicious
JavaScript's. The system uses an auditing
system in the Mozilla Firefox web browser that
can perform both anomaly or misuse detection.
This system monitors the execution of
JavaScript and compares it to high level
policies to detect malicious behavior. This
solution is insufficient because if new
vulnerabilities should be detected, new rules
have to be implemented and the browser has to
be rebuilt. Also it is possible to detect various
kinds of malicious scripts, not only XSS
attacks. However, for each type of attack a
signature must be crafted, meaning that the
system is defeated by original attacks not
anticipated by the signature authors. Some
authors [10-14] have proposed the use of static
analysis techniques to discover input validation
flaws in a web application; however, this
approach requires access to the source code of
the application [10, 11]. Moreover, those static
analysis schemas are usually complemented by
the use of dynamic analysis techniques. Huang
et al [12], Balzarotti et al [14] used this
techniques to confirm potential vulnerabilities

detected during the static analysis by watching

53

the behavior of the application at runtime.
Several existing systems have been adapted to
detect XSS. Application level firewalls [5],
reversal proxies [15] and IDS (Intrusion
detection systems) [16, 17], have been adapted
to try to mitigate the XSS problem. Firewalls
focus on tracking sensitive information and
controlling whenever data is to be sent to
untrusted domains. Reverse proxies receive all
responses from the web application and check
whether there are any unauthorized scripts on
them. IDS approaches deal with the
identification of traffic patterns that allow the

detection of known XSS attacks.

Kirda et al [5] presented Noxes as a client-side
Web-proxy that relays all Web traffic and
serves as an application-level firewall. The
main contribution of Noxes is that it is the first
client-side solution that provides XSS
protection without relying on the web
application providers. Noxes supports an XSS
mitigation mode that significantly reduces the
number of connection alert prompts while at
the same time providing protection against
XSS attacks where the attackers may target
sensitive information such as cookies and
session IDs. The approach works without
attack-specific signatures. The main problem of
Noxes as that it requires user-specific
configuration (firewall rules), as well as user

interaction when a suspicious event occurs.

Another client-side approach was presented by

Vogt et al [13], which aims to identify

SJ.LT.N Vol .2 (2014)

information leakage using tainting of input data
in the browser. The solution presented in this
paper stops XSS attacks on the client side by
tracking the flow of sensitive information
inside the web browser. If sensitive
information is about to be transferred to a third
party, the user can decide if this should be
permitted or not. As a result, the user has an
additional protection layer when surfing the
web, without solely depending on the security

of the web application.

Gal’an et al [18] completed the scope of
vulnerability scanners by allowing them to
check the stored—XSS

vulnerabilities in web applications. The system

presence of
proposed was based on multi-agent
architecture allowing for each one of those
tasks to be carried out by a different type of
agent. This design decision has been taken to
allow each of the stages of the scanning
process to be performed concurrently with the
other stages. It also allows for the different
subtasks of the scanning process to take place
in a distributed and/or parallel way. The agent
that explores the web site in order to find the
injection points where stored—XSS attacks
could be launched. This parsing process is
similar to that of web crawlers and spiders.
XSS-Me the One of the best open source tools
was the Exploit-Me series presented by
securitycompass.com [19]. Security Compass

created these tools to help developers easily

54

identify cross site scripting (XSS) and SQL

injection vulnerabilities.

XSS-Me is a Firefox add-on that loads in the
sidebar. It identifies all the input fields on a
page and iterates through a user provided list of
XSS strings: opening new tabs and checking
the results. When this process completes you
get a report of what attacks got through, what
didn’t, and what might have. The tool does not
attempt to compromise the security of the
given system. It looks for possible entry points
for an attack against the system. There is no
port scanning, packet sniffing, password
hacking or firewall attacks done by the tool.
You can think of the work done by the tool as
the same as the manual testers for the site
manually entering all of these strings into the
form fields. This tool is good for detecting XSS
attacks but it needs user interaction to do
testing (like manual testing), moreover its
cannot follow all links in the website, as a
result, it scans the link provided by the user

click.

All client-side solutions share one drawback:
the necessity to install updates or additional
components needed on each user’s workstation.
While this might be a realistic precondition for
skilled, security-aware computer users, it is
perceived as an obstacle or is not even
considered by the vast majority of users. Thus,

the level of protection such a system can offer

is severely limited in practice.

SJ.LT.N Vol .2 (2014)

Methodology

Current fully automated Web Vulnerability
Scanners (WVS) has three major components:
A crawling component, an attack component

and an analysis component [20]:
1. Crawling Component:

The crawling component collects all pages of a
Web application. It uses an input URL as seed
starts following links on each page and store
the result in list. The crawling module is
arguably the most important part of a Web
application Vulnerability Scanner; if the
scanner's attack engine is poor, it might miss
vulnerability, but if it's crawling engine is poor,

then it will surely miss the vulnerability [21].
2. Attack Component:

The attack component scans website, extracts
all internal links then scans all crawled pages
forms field which are used in URL parameters
then injects various attack patterns into these
parameters; Parameters can be part of the URL
query string or part of the request body in
HTTP POST requests. Both are equally
exploitable. In this work, most examples have
forms with input fields to illustrate vulnerable

parameters [20].
3. Analysis Component:

The analysis component parses and interprets
the server's responses. It uses attack-specific

criteria and keywords to determine if an attack

55

was successful. An attack vector is a piece of
HTML or JavaScript code that is added into a
parameter in-order to be reflected to users by
being embedded into a HTTP response. The
goal of an attack vector is to make user
browser execute malicious code. The malicious
code can be either fetched from trusted website
or be part of the attack vector itself, although
the former allows more complex exploits. two

examples for typical attack vectors are:

1. <script

src="http://attacker.com/exploit.js"></script>

loads and executes a remote script from

website.
2. <body onload="document.write('<img

src=http://attacker.com/?'+document.cookie+'/

>')H>

performs cookie stealing as part of the attack

vector.

Our proposed model architecture is shown in
fig. 2. In step 1, all pages are crawled and
stored into the list (step 2). For simplicity and
easy installation, data is stored in a text file
rather than in a database. Stores are only small
amounts of data (a few kilobytes) that don't
cost much performance. In step 3, the attack
module takes pages from the list with
modifiable parameters, injects attack vectors
and passes the responses to the analyzer, which

analyzes them for injected patterns in step 4. In

this step, the attack component injects a

SJ.LT.N Vol .2 (2014)

common attack vector such as <script>alert
(“XSS”) </script> and the analysis component
uses a regular expression to search for the very
same injection string. If the attack pattern is
found unmodified (no characters were added or
replaced), the attacked parameter is vulnerable

to XSS.

PalXSS tool are used to detect XSS attack by
performing an attack and checking the resulting
page if the malicious code is injected without

modification. The steps are:

1. A selection of attack vectors is obtained
from an attack vector repository; XSS attack
vectors are commonly stored in repositories
and include the description of the attack as well

as the script code to be injected.

2. Selected attack vectors are launched against
inputs of the web application. Those attack

vectors are generally injected in an

HTTP request as parameters or as fields in a

web form.

3. PalXSS tool receives the responses to the

requests containing the injected code.

4. The PalXSS tool checks for the presence of
injected script in the received responses. If
affirmative, XSS attack is considered
successful and a vulnerability of the scanned

web application has been discovered.

56

Implementation

PalXSS is a secure tool which is written in
python language. The tool consists of four

main classes; these classes are:
1. Web Page Parser class:

When the client launches this class, python
script will prompt him to enter a URL. The
script will connect to the URL entered and hunt
for any <a href> elements, as it systematically
retrieves information from the pages it visits
and it propagates through the site following the
hyper-links it finds. Nevertheless, it differs
from the typical web crawler in two aspects:
(1) It just follows the hyper-links with
destination to the scanned site discarding all
external links and, (2) the information

recovered are web forms

2. Spider Class:

In this class, the script will connect to the URL
entered in the previous step and hunt for any
<form> elements. It will output the attributes
associated with the elements allowing client to
see what method is being used and what action
is being performed. Once all the <form>
elements are collected, it will then move on to

<input> tags. All entries found will then be

displayed as "possible" targets.

SJ.LT.N Vol .2 (2014)

Step 1: Step 2
Spider website

-

store links in List

S5tep 3 Step 4

Inmject XSS Payloads Attack Analyze Response
o N
X855 Found

o g

No Vouln

______—-'

> -
XSS Found
XSS Found
No Voln

Fig 2: Proposed model architecture

3. Script Injector Class:

This class extracts the collection of web forms
elaborated by the web page parser class and
register in the injection repository. The class
will inject a collection of XSS attack vectors
from a well-known repository into different

input fields of each of the injection points

4. The Store Class:

This class shows the report which contains: the
links extracted from the base URL, and the
input form field hacked. This report helps the
client to know the XSS wvulnerable in the

website.
Dataset

We performed a series of experiments with our
prototype implementation to demonstrate its
ability to detect previously known cross-site
scripting vulnerabilities, as well as new ones.
To this end, PalXSS was run on seven popular
XSS Payloads. The dataset of attacks used for
evaluation our tool were extracted from a

repository of XSS attack vectors found in

http://ha.ckers.org/xss.html. Those vectors use
different ways of inserting arbitrary script code
trying to be unnoticed by the web application
and, in our case, to be incorporated as
legitimate content in the web application. As
the attack vectors in the repository are large,
the experiment tests every type to define the
code accepted. The XSS payloads show the
code accepted by testing our tool in real
websites. The number of injection attacks can
affect the performance of detection. To
enhance the performance, we took seven
attacks as default in our tool that was accepted

in most of the tests.
Evaluation

This section presents the evaluation of PalXSS
tool. The task was to detect all XSS
vulnerabilities in online website. Different
categories of tests were conducted to ensure
that our solution works. The two major aspects
of the evaluation application are (i) to compare
our work architecture with the traditional
architecture of scanners and (ii) the comparison
of the execution time and accuracy by three

tools.

-

57

SJ.LT.N Vol .2 (2014)

An implementation of the proposed system was
developed with the purpose of testing and
evaluating the scanner against different
websites; three scanners were used for the
evaluation. These scanners work at the same
condition with the same parameters; also these
tools share the same methodology. The tools

arc:

Acunetix 7, XSSploit: and PalXSS. Fig. 3
shows the execution time of our tool compared
to other tools e.g., the first website of testing is

http: xss.progphp.com; the execution time of

our tool is 84/sec, it has a better performance
compared to XSSploit tool, while it has law

performance when compared to Acunetix tool.

The execution time of our tool is the
minimum in all cases than other tools, while in
some cases such as in website 8 as shown in
fig. 3 the execution time is the maximum, this
result occurs because the number of field
detected in this site is ten which takes more
time to check the result than other tools which

can’t detect them, this gives the best accuracy.

The result in the table 1 shows the accuracy of
PalXSS tool as the best compared to other
tools; the average detection rate of PalXSS tool
even 90.24%, while the average detection rate
of XSSploit was 24.39% and the average

detection rate of Acunetix tool was 57.32%.

58

The accuracy of PalXSS tool can be satisfying

the users to use this tool among others.

SJ.LT.N Vol .2 (2014)

59

Time/s

700
600 - i
500 A
400
m XSSDetection
20 m XSSPloit
200 - Acunetix 7
100 - ———
a - j I_-l-l_-
== — —a - -_— (W) s [(S =] = [} — —J
= = =
Websites

Average

Fig.3. Comparison of three tools in this works

~gE | €Y £i4
Websites V}lln' Vulnerable field Detected
Filed

1 | http://xss.progphp.com 2 2 2 2

2 | http://testasp.vulnweb.com 1 1 1 1

3 | http://demo.testfire.net 2 1 2 2

http://www.kaspersky.com.pt/base/guest/mimemessage/te

4 | st_multibyte_message.php 6 6 0 0

5 | http://testphp.vulnweb.com 2 0 2 2

6 | http://demo.arcticissuetracker.com 2 1 0 2

7 | http://zero.webappsecurity.com 5 1 5 5

8 | http://www.binaryanalysis.org/en/home 10 10 1 6

9 | http://www.socialweb.net/Accounts/general.lasso?new=1 25 25 0 10

10 | http://www.qou.edu/contactUs.do?key=2 6 6 5 2

11 | http://www.maktoobblog.com/search 1 1 1 1

12 | http://www.gametiger.net 5 5 1 5

13 | http://www.asianave.com/user/register.html 15 15 0 9

Total 82 74 20 47
Average 24.39
90.24% % 57.31%

Table 1: the detection rate of three tools

A.___——-*/

——

SJ.LT.N Vol .2 (2014)

Recommendations

We recommend that the regular security tests
need to be part of an effective software
development process; furthermore, detected
tool must play an important role in providing a
testing framework. The developers must train
well enough about the security holes in the
website. Security awareness and education is
incorporated throughout several stages such as
creating documentation, threat modeling etc.
Nevertheless, it is important to understand that
the goal of vulnerability scanning is to reveal
security flaws so that developers can trace
these issues and implement security
mechanisms. In addition, we propose that as
our culture becomes more dependent on
information, social engineering will remain the
greatest threat to any security system.
Prevention includes educating people about the
value of information, training them to protect

it, and increasing people's awareness of how

social engineers operate.
Conclusion

This paper analyzed the problems that current
Web Vulnerability Scanners are facing when
trying to detect XSS vulnerabilities, as reported
in recent research it was found that the
vulnerability scanners are a promising
mechanism to fight the XSS vulnerabilities in
web applications. One reason for the
widespread of XSS vulnerabilities is that many

developers aren't trained well enough. Current

60

proposals allow to automatically identifying
that kind of security holes, although they also
present an important limitation: the accuracy of
detecting can’t satisfy the users need and the
performance is low. In this work, a secure tool
was developed which called PalXSS; this tool
works in forum, takes input form field as a
target to detect XSS attacks by injecting

malicious JavaScript code.

Two factors were used to evaluate the new
tool: the performance and accuracy. The
average detection rate of PalXSS tool is
90.24% while the Acunetix is 57.31% and
XSSploit is 24.39% in order. The results show
the accuracy of PalXSS tool satisfying the
users need than other tools. In addition, the
execution time of the PalXSS tool had 137/sec,
while the Acunetix and XSSploit had
147/sec,187/sec in order; this result shows that
the performance of our tool have high
performance and accuracy among other tools
used in this work. The detection rate of PalXSS
tool can satisfy the client’s need, which gives

the motivation to enhance the tool in the future

work.

SJ.LT.N Vol .2 (2014)

References

[1] Athanasopoulos, E. (2011). Modern
Techniques for the Detection and
Prevention of Web2. 0 Attacks (Doctoral
dissertation, University of Crete)..

[2] B. Almurrani “Cross-Site-Scripting (XSS)
Attacking and Defending” BACHELOR'’S
THESIS, ABSTRACT TURKU
UNIVERSITY OF APPLIED SCIENCES
Degree Program in Information
Technology, Autumn 2009

[3] Cert advisory ca-2000-02 "malicious html
tags embedded in client web requests.
February 2000.

[4] Open Web Application Security Project.
OWASP Web Application Scanner
Specification Project.
http://www.owasp.org/index.php/Category:
OWASP Web Application Scanner
Specification Project, 2010. [Online;
retrieved June 19, 2010].

[5] Kirda, E., Kruegel, C., Vigna, G., &
Jovanovic, N. (2006, April). Noxes: a
client-side solution for mitigating cross-site
scripting attacks. In Proceedings of the
2006 ACM symposium on Applied
computing (pp. 330-337). ACM..

[6] Doupé, A., Cova, M., & Vigna, G. (2010).
Why Johnny can’t pentest: An analysis of
black-box web vulnerability scanners.
In Detection of Intrusions and Malware,
and Vulnerability Assessment (pp. 111-
131). Springer Berlin Heidelberg..

[7] Guido van Rossum Fred L. Drake, Jr.,
editor “ Python Tutorial Release 2.3.3
“December 19, 2003.

[8] S. Christey and R. Martin, “Vulnerability
type distributions in cve”, version 1.1.
[online], http://cwe.mitre.
org/documents/vuln-trends/index.html,
(09/11/07), May 2007.

[9] Hallaraker, O., & Vigna, G. (2005, June).
Detecting malicious javascript code in
mozilla. In Engineering of Complex
Computer Systems, 2005. ICECCS 2005.
Proceedings. 10th IEEE International
Conference on (pp. 85-94). IEEE..

[10] Wassermann, G., & Su, Z. (2008, May).
Static detection of cross-site scripting

61

vulnerabilities. In Software Engineering,
2008. ICSE'08. ACM/IEEE 30th
International Conference on (pp. 171-180).
IEEE.

[11] Jovanovic, N., Kruegel, C., & Kirda, E.
(2006, May). Pixy: A static analysis tool
for detecting web application
vulnerabilities. In Security and Privacy,
2006 IEEE Symposium on (pp. 6-pp).
IEEE.

[12] Huang, Y. W., Yu, F., Hang, C., Tsai,
C. H,, Lee, D. T., & Kuo, S. Y. (2004,
May). Securing web application code by
static analysis and runtime protection.
In Proceedings of the 13th international
conference on World Wide Web (pp. 40-
52). ACM.

[13] Vogt, P., Nentwich, F., Jovanovic, N.,
Kirda, E., Kruegel, C., & Vigna, G. (2007,
February). Cross Site Scripting Prevention
with Dynamic Data Tainting and Static
Analysis. In NDSS.

[14] Balzarotti, D., Cova, M., Felmetsger,
V., Jovanovic, N., Kirda, E., Kruegel, C., &
Vigna, G. (2008, May). Saner: Composing
static and dynamic analysis to validate
sanitization in web applications. In Security
and Privacy, 2008. SP 2008. IEEE
Symposium on (pp. 387-401). IEEE.

[15] P. Wurzinger, C. Platzer, C. Ludl, E.
Kirda, and C. Kruegel. Swap: “ Mitigating
xss attacks using a reverse proxy . In
Proceedings of the ICSE Workshop on
Software Engineering for Secure Systems
(SESS °09), 2009.

[16] C. Kruegel and G. Vigna. “ Anomaly
detection of web-based attacks”. In
Proceedings of the 10th ACM conference
on Computer and communications security,
pages 251-261. ACM New York, NY,
USA, 2003.

[17] M. Johns, B. Engelmann, and J.
Posegga. ““ Xssds: Serverside detection of
cross-site scripting attacks”. In Proceedings
of the Annual Computer Security
Applications Conference, pages 335-344.
IEEE Computer Society Washington, DC,
USA, 2008.

[18] E. Gal’an, A. Alcaide, A. Orfila, J.
Blasco “A Multi—agent Scanner to Detect

-
=

