

S.J.I.T.N Vol .8 No.1 (2020)

journal homepage: www.sabauni.net/ojs

Article

Increasing the Speed of the Recursive Algorithm and Reducing Stack Memory
Consumption by Using the Dynamic Rule(base)

Nashwan Saeed M.G. Al-Thobhani 1 *, Naser Ahmed O. Al-Maweri1 , Jamil Sultan1

1 Sana'a Community College, Sana’a, Yemen

Article info Abstract

Article history:

Accepted: April. 2020

 Recursive algorithms always consume a computer's memory stack, and in

this paper we worked to increase the speed of the recursive algorithm

through a dynamic rule(base) that changes during its implementation

process. Dynamic rule(base) regulation often allows avoiding repeated

calculations of the same sets of parameter values, which reduces the number

of repeated calls and simplifies slow calculations. Here, a mechanism will

be created for the rule using simple and well-known examples to calculate

the Fibonacci sequence, recurring linear sequences of general shape, and

binomial transactions.

Keywords:
Recursion;

Rule (base);

Dynamic;

Fibonacci;

Recursive algorithms

* Corresponding author: Nashwan Saeed
M.G. Al-Thobhani

E-mail: nashwansg@gmail.com

All Rights Reserved © 2020 Saba Journal of Information Technology and Networking, Published by Saba University.

22

S.J.I.T.N Vol .8 No.1 (2020)

1. Introduction
Recursive algorithms belong to the class of
algorithms with high resource consumption, since
with a large number of self-calls of recursive
functions, the stack area is quickly filled [1]. In
addition, organizing the storage and closing of the
next layer of the recursive stack are additional
operations that require time. The complexity of
recursive algorithms is also affected by the
number of parameters passed by the function [9].
Consider one of the methods for analyzing the
complexity of a recursive algorithm, which is
built on the basis of counting the vertices of a
recursive tree [9]. To estimate the complexity of
recursive algorithms [2], a complete recursion
tree is constructed like Figure 1. It is a graph, the
vertices of which are the sets of actual parameters
for all calls to the function, starting from the first
call to it, and the edges are the pairs of such sets
corresponding to mutual calls. In this case, the
nodes of the recursion tree correspond to the
actual calls of the recursive functions. It should
be noted that the same sets of parameters can
correspond to different nodes of the tree. The root
of the complete recursive call tree is the top of the
complete recursion tree corresponding to the
initial call to the function.

Figure 1. Schematic representation of recursive calls
when finding f (5)

When constructing any recursive algorithm, in
addition to parameter determination and
decomposition, the choice of its rule (base) β (it's
just a symbol that we refer to the dynamic rule

(base)), that is, the selection of a subset of sets of
acceptable parameter values through which
calculations are made the algorithm is very
simple and provides a return mechanism for
repeated calls. Usually this rule does not change
during calculations. With a fixed rule, it is often
necessary to perform multiple function
calculations for the same sets of parameter values
[6].
Some systematic solutions related to increasing
the speed of recursive algorithms through
dynamic rule(base) during implementation. The
dynamic rule (base) often allows avoiding
repeated calculations of the same sets of
parameter values, which reduces the number of
repeated calls and simplifies slow calculations
[6]. The dynamic rule (base) mechanism is
explained by using simple and well-known
examples of calculating the Fibonacci sequence,
recurring linear general-form sequences and
binomial coefficients.

2. Sequence Fibonacci
Let's begin with calculation a member of
sequence:

The recursive function for calculating f (n) with a
static base (0,1) directly implemented by
formulas (1), looks like this:

With increasing n, the number k (n) of recursive
calls by (2) grows approximately as 0.725*(1.62)n
(see the statement of Theorem1) [4, p71].
Therefore, calculations according to (2) are rather
laborious and already at n = 50 it is difficult to
implement. We modify (2), turning it into a
function with a dynamic rule (base). For this, in
the scope of the projected function, we define the
variables n, k and the array v:

23

S.J.I.T.N Vol .8 No.1 (2020)

var n, k: integer,
v: array [0..1000] of int64;
In the array v we will store the expanding base,
and in k the current number of elements in it. The
initial values for the base β and the counter of the
number of elements in it are determined as
follows: v [0]: = 1; v [1]: = 1; k = 2. In the future,
it is supposed to enter into the base each newly
calculated value of the function. Then the
“dynamic modification” f(n) can be written in the
form (3).

When solving the problem, each recursive call,
including the initial start of the calculations,
initiates work, as it were, from the original
algorithm. The sequence of calculations of the
values of local and global variables
corresponding to one specific "virtual instance"
[6] of the algorithm and not including
Calculations on calls from a given instance itself
are called a slice of recursive calculations. It is
convenient to consider exits from a particular
slice a to a slice of the next depth of recursive
nesting or to any subprogram as an appeal to
some “black box” [4, p. 272] that transforms and
returns all or some values from the scope of α. A
specially designed calculation form, which
somehow fixes the calculation of a particular
recursive slice, is called the form. The form
should indicate the relationship between the steps
of the calculations and, in addition, a location for
the calculations to be proposed. A completed
form is called an embodiment, and a sequence of
incarnations corresponding to a sequence of
recursive calls is called a recursogram [4, p. 109].
An embodiment is generated for each recursive

slice on a separate form. The sequence diagram
of recursive calls and computations with a
dynamic rule(base) for the function fbase1(n) is
extremely simple. It is presented in Figure 2. The
points of start and end of calculations on the
diagram are depicted by an oval. The incarnations
of recursive slices are numbered and presented in
the figure in the form of rectangles. The
incarnations themselves are written out in
sufficient detail. Recursive calls and returns from
them for organizing deferred calculations are
represented by solid curved arrows between the
individual forms. The dashed lines indicate the
options for completing calculations based on
values from a base.
We modify function (3) by reversing the order of
the recursive calls fbase1(n-2) and fbase1(n-1).
The calculation scheme for the obtained function
(4) is presented in Figure 3, where the forms and
the relationships between them are arranged in
the same way as in Figure 2. The sequence of
recursive calls in calculating f (n) according to (4)
will correspond to the passage through the tree D,
along its left branch from the root f (n) down to f
(2).

 If we rewrite function (4) in the form (5), then,
contrary to expectations, it will not work more
slowly. The scheme of recursive calls on it will
just exactly coincide with the corresponding call
scheme for function (4), and the absence of
additional local variables a and b in the
calculations will even lead to some decrease in
the calculation time. This happens because in the
assignment v [n]: = fbase2 (n-1) + fbase2 (n-2),
recursive calls are realized only at the expense of

24

S.J.I.T.N Vol .8 No.1 (2020)

the first term, and when it comes to the second
term, its value is in the form v(n-2) is already
among the elements of the base in the form of an
indicator of completion of calculations.

Figure 2. Diagram of recursive calculations with
a dynamic rule (base) for the function f (n) =

fbasel (n) with n = 6

Figure 3. Diagram of recursive calculations with
a dynamic rule (base) for the function f (n) =

fbase2 (n) with n = 6

When working with a dynamic rule(base) β, it is
not always possible to get access to the sets of
values of its parameters as easily as it was in
examples (3) and (4). There, due to the specifics
of the problem and the algorithm used, it was
actually possible to organize direct access to the
required values. In general, it is important not to
overload the base with unnecessary elements.
With a "large" base, checking for completion in
each recursive call can be very laborious.
Moreover, the dynamics of the rule (base) implies
not only its expansion, but also a possible
narrowing. If, for one reason or another, after a
specific recursive call, certain sets of values can
no longer be used as indicators for completing
calculations, it is advisable to remove them from
the base.
In the next version of the program-function (6) of
calculating f (n), the elements added to the base
are not used as indicators of completion of
calculations in recursive calls, but only as values
in deferred calculations.

For end of the given item we needed to formulate
and prove the statement about quantity of
recursive calls at calculation of value of function
Fibinacii under the program (2).
The theorem 1. The quantity k (n) recursive calls
at function evaluation Fibonacci f (n) by (2) is
equal to the program.

25

S.J.I.T.N Vol .8 No.1 (2020)

 The proof for function to (п) by obvious image
in the following recurrent ratio are carried out:

From here we have:

Proceeding from the general theory of linear
returnable sequences, it is uneasy to receive at the
final formula for calculation to (п). In it also we
shall engage. For the further reasoning's it is
convenient for us to predetermine k (n) for the
whole negative values п, believing k (n) =0 at
n<0. Using K.Aiversona's notation [3], (8) it is
possible to copy as:

Let's remind, that K.Aiverson, the author of the
programming language of APL, has entered into it
a design of a kind [L], where L a logic condition :

[𝐿] = ቄ
1, 𝐿 = 𝑇𝑟𝑢𝑒
0, 𝐿 = 𝐹𝑎𝑙𝑠𝑒

This simple notation turned out to be very useful in
transformations and calculations of various sums [4,
p. 403-422], [5, p. 50].

Let G(z) be the generating function for k(n). Then

And therefore,

Let p (z) and Q(Z) - accordingly numerator and a
denominator of the right part (10) and

Then we have:

From Theorem1 on the expansion of the rational
function P (z) / Q (z) in a power series in the case
of different roots of Q (z) [7 p. 374] for our case
we get:

Where

Using (11) and (12), the last relation we have:

From here

and (7) it is proved.

Investigation 1. From (7) for and the Bine
formula [7, p. 331] implies that

Investigation 2. In the binary tree of recursive
calls when calculating f(n), there are vertices
calculations on f(n).

If formula (13) could be anticipated in one
way or another, for example by considering
the first few terms of the sequence k(n), then
its proof could be carried out by the method of
mathematical induction. In this case, the
statement of the theorem would follow from
the recurrence relations (8) and the Binet
formula [7 p. 331].
Indeed, 7 for n = 0 and n = 1, relation (13) is
valid:

26

S.J.I.T.N Vol .8 No.1 (2020)

Let (13) be satisfied for n = m-2 and n = m-1 (m>
= 2):

But in this case

That is, the induction is justified and the
formula (13) is proved.

Let us now show relation (7). For n = 0 and n
= 1 it is valid. Let n> = 2. Applying Binet's
formula [7, p. 331] in (13) to f (n + 1), we
obtain (7).

3. Returnable Sequences
We shall consider one more example on
рекурсию with dynamic rule (base). Let to —
natural number, C0, C1..., Ck-1 — real numbers
also there is a returnable equation of the order to
general view:

This equation is a recurrent and generates
numerical sequence:

let's make the recursive program for calculation
of the general member (15).
Let files of factors with = (C0, CI are set..., Ck-i)
and initial members

To write recursive program - function with
static base {V0, VI..., Vk-i} calculations V n (n
= to, to 4-1...) work does not make. Those is,
for example, function rbase (n). It is
supposed, that a variable to and files with and
v are in the field of visibility rbase (n):

Calculations on rbase (n) are very laborious
even for п> 35 because of the rapidly
growing number of recursive calls along with
n.
Let's construct analogue for rbase (n) function
with dynamic rule (base) rbase1 (n.) we shall
count, that a variable k matrix c and v are in
the field of visibility rfeasel (n), under v is
preserved not less п elements (n>= к), and
they are initiated by initial values and zero:
v = (v0, v1..., vn-1 ,0,0...). Then rbase1 (n)
could look as follows:

Originally the base will consist of all nonzero
elements of a matrix v. Each recursive call
expands base on one nonzero element v. We
shall note, that rbasel (n) — already rather
effective program function with quantity of
recursive calls at n> = to, equal to (п — to +
1). Thus only in п — to + 1 from them
calculations are really spent, and in other cases
all terminates on values from extending base.

Recursive function rbase2 (n) with dynamic
rule (base) is arranged the same as and fbase1
(n), but for it is not required preliminary
initiation of a "tail" part of a file v by zero.
There is enough in the field of visibility rbase2
(n) to define initial value of a variable s, equal
to. The size s will serve further the counter of
quantity of elements already placed in
dynamic rule (base). Quantity of recursive
calls at calculation up to rbase2 (n) same, as
well as at calculation on rbasel (n).

27

S.J.I.T.N Vol .8 No.1 (2020)

4. Binomial coefficient
Let n and m the non-negative integers

numbers 0 < = m < = n .
to calculate under the following recurrent
formula:

note using operations of multiplication or
division and generating known triangle.
Direct calculation of coefficient C(п, т) on
"true" recursive program – function already

at п> = 40 becomes rather bulky and
consequently it is difficultly feasible for real time.
At the same time anything in this case does not
interfere with the organization of recursive
calculations with dynamic rule (base). Let in the
program, where formed function C2 will be located
(n, m) calculations of binomial factors, are available
definitions:

We initialize a part of a matrix v under base as
follows:

According to the given fragment initially to
dynamic rule (base) nonzero elements of a matrix v
[i, j]: v[i,0] = 1 (i = 0..., n- т); v[j, j]= 1 (j =0...m).

Subsequently in a body of function С2 (n, т) the
base will extend replacement of zero values v [i, j]
accordingly on calculated values of coefficient
C (i, j) (i = 0..., n-т, j =0,...,m). We shall note the
following fact. Generally the matrix v should
contain (n+1)^2 elements. For accommodation of
triangle Pascal it is necessary (n/2+ 1)*(п-1)
elements. Really at calculation of concrete
coefficient C(п, т) for it is required base only
(т + 1). (n- m + 1) elements. It is so much
elements also are exposed to initial initialization.
Program-function of calculation of binomial
coefficients C2(n, m) in this case could be
written down so:

The finding of coefficient C(п, т) on this
recursive program - function calculations it is not
spent and required no more (m + 1)*(n-m + 1)
recursive references with the same quantity of
operations of addition at the postponed calculations.
Therefore, an obstacle for carrying out of
calculations now can be only a range of allowable
integer values. In our case received values should
not surpass size 263-1= 9223372036854775807. On
Figure 4 big and small squares designate
elements of triangle for п = 8. At a finding of
coefficient C(8,5) on program - function С2 to
dynamic rule (base) the elements corresponding to
the squares are originally attributed. Then, only the
elements corresponding to the large blackened
squares located in rows from the first to the third
in the selected parallelogram and from left to
right along the lines are sequentially calculated
and added to the base. Small blackened squares
correspond to elements of Pascal's triangle that
are not involved in the calculation.

28

S.J.I.T.N Vol .8 No.1 (2020)

Figure 4. Recursion with dynamic rule (base) at

calculation with (8,5) under program С2

5. Conclusion

In this paper, the researchers obtained an increase
in the speed of the recursive algorithm through a
dynamic rule (rule) that changes during the
implementation process. The dynamic rule(base)
often allows avoiding repeated calculations for
the same sets of parameter values, which reduces
the number of repeated calls and simplifies
calculations. A dynamic rule mechanism was
implemented using simple, well-known examples
to calculate Fibonacci sequences, repeated linear
sequences of the general shape, and binomial
coefficients.

6. References

[1] Daniel Weibel, (2017, Nov 9). "Recursion
and Dynamic Programming"[Online]
https://weibeld.net/ algorithms/recursion.html.

[2] Boronenko T.A. The concept of a school
course in computer science, St. Petersburg,
1995.

[3] K. E. Iverson, (2020, February 16).
Mathematic "APL programming
language""[Online],https://en.wikipedia.org/w

iki/
APL_(programming_language)#Mathematic.

[4] YESAYAN A.R., RECURSION IN COMPUTER

SCIENCE, TULA: 2000.
[5] BAUER F.L., HNS R., Hill U. Informatika.

Tasks and decisions, Mir, 1978.
[6] Yesayan A.R. Recursion in computer

science. Descartes' method. – Tula , 2000.
[7] GRAHAM Р., WHIP D., O.Konkretnaja, The

bases of computer science, Mir, 1998.
[8] Gutman G., "Realization of recursive

algorithms in BASIC", Informatics and
education, vol. 5 , pp. 56-59, 1989.

[9] G.V.Vanykina, T. O. Sundukova, Algorithms
of computer data processing, Tula, 2012

[8] Roberts, Eric S., Thinking Recursively, John
Wiley and Sons, 1986.

[9] Eric S., “Thinking Recursively with Java”, An

excellent, intuitive book. Roberts, John Wiley

and Sons, 2006.

29

