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 Recursive algorithms always consume a computer's memory stack, and in 

this paper we worked to increase the speed of the recursive algorithm 

through a dynamic rule(base) that changes during its implementation 

process. Dynamic rule(base) regulation often allows avoiding repeated 

calculations of the same sets of parameter values, which reduces the number 

of repeated calls and simplifies slow calculations. Here, a mechanism will 

be created for the rule using simple and well-known examples to calculate 

the Fibonacci sequence, recurring linear sequences of general shape, and 

binomial transactions. 
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1. Introduction  
Recursive algorithms belong to the class of 
algorithms with high resource consumption, since 
with a large number of self-calls of recursive 
functions, the stack area is quickly filled [1]. In 
addition, organizing the storage and closing of the 
next layer of the recursive stack are additional 
operations that require time. The complexity of 
recursive algorithms is also affected by the 
number of parameters passed by the function [9]. 
Consider one of the methods for analyzing the 
complexity of a recursive algorithm, which is 
built on the basis of counting the vertices of a 
recursive tree [9]. To estimate the complexity of 
recursive algorithms [2], a complete recursion 
tree is constructed like Figure 1. It is a graph, the 
vertices of which are the sets of actual parameters 
for all calls to the function, starting from the first 
call to it, and the edges are the pairs of such sets 
corresponding to mutual calls. In this case, the 
nodes of the recursion tree correspond to the 
actual calls of the recursive functions. It should 
be noted that the same sets of parameters can 
correspond to different nodes of the tree. The root 
of the complete recursive call tree is the top of the 
complete recursion tree corresponding to the 
initial call to the function. 

 

Figure 1. Schematic representation of recursive calls 
when finding f (5) 

When constructing any recursive algorithm, in 
addition to parameter determination and 
decomposition, the choice of its rule (base) β (it's 
just a symbol that we refer to the dynamic rule 

(base)), that is, the selection of a subset of sets of 
acceptable parameter values through which 
calculations are made the algorithm is very 
simple and provides a return mechanism for 
repeated calls. Usually this rule does not change 
during calculations. With a fixed rule, it is often 
necessary to perform multiple function 
calculations for the same sets of parameter values 
[6]. 
Some systematic solutions related to increasing 
the speed of recursive algorithms through 
dynamic rule(base) during implementation. The 
dynamic rule (base) often allows avoiding 
repeated calculations of the same sets of 
parameter values, which reduces the number of 
repeated calls and simplifies slow calculations 
[6]. The dynamic rule (base) mechanism is 
explained by using simple and well-known 
examples of calculating the Fibonacci sequence, 
recurring linear general-form sequences and 
binomial coefficients. 
 

2. Sequence Fibonacci 
Let's begin with calculation a member of 
sequence: 

 
The recursive function for calculating f (n) with a 
static base (0,1) directly implemented by 
formulas (1), looks like this: 
 

 
With increasing n, the number k (n) of recursive 
calls by (2) grows approximately as 0.725*(1.62)n 
(see the statement of Theorem1) [4, p71]. 
Therefore, calculations according to (2) are rather 
laborious and already at n = 50 it is difficult to 
implement. We modify (2), turning it into a 
function with a dynamic rule (base). For this, in 
the scope of the projected function, we define the 
variables n, k and the array v: 
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var n, k: integer,  
v: array [0..1000] of int64; 
In the array v we will store the expanding base, 
and in k the current number of elements in it. The 
initial values for the base β and the counter of the 
number of elements in it are determined as 
follows: v [0]: = 1; v [1]: = 1; k = 2. In the future, 
it is supposed to enter into the base each newly 
calculated value of the function. Then the 
“dynamic modification” f(n) can be written in the 
form (3).  
 

 
 
When solving the problem, each recursive call, 
including the initial start of the calculations, 
initiates work, as it were, from the original 
algorithm. The sequence of calculations of the 
values of local and global variables 
corresponding to one specific "virtual instance" 
[6] of the algorithm and not including 
Calculations on calls from a given instance itself 
are called a slice of recursive calculations. It is 
convenient to consider exits from a particular 
slice a to a slice of the next depth of recursive 
nesting or to any subprogram as an appeal to 
some “black box” [4, p. 272 ] that transforms and 
returns all or some values from the scope of α. A 
specially designed calculation form, which 
somehow fixes the calculation of a particular 
recursive slice, is called the form. The form 
should indicate the relationship between the steps 
of the calculations and, in addition, a location for 
the calculations to be proposed. A completed 
form is called an embodiment, and a sequence of 
incarnations corresponding to a sequence of 
recursive calls is called a recursogram [4, p. 109]. 
An embodiment is generated for each recursive 

slice on a separate form. The sequence diagram 
of recursive calls and computations with a 
dynamic rule(base) for the function fbase1(n) is 
extremely simple. It is presented in Figure 2. The 
points of start and end of calculations on the 
diagram are depicted by an oval. The incarnations 
of recursive slices are numbered and presented in 
the figure in the form of rectangles. The 
incarnations themselves are written out in 
sufficient detail. Recursive calls and returns from 
them for organizing deferred calculations are 
represented by solid curved arrows between the 
individual forms. The dashed lines indicate the 
options for completing calculations based on 
values from a base. 
We modify function (3) by reversing the order of 
the recursive calls fbase1(n-2) and fbase1(n-1). 
The calculation scheme for the obtained function 
(4) is presented in Figure 3, where the forms and 
the relationships between them are arranged in 
the same way as in Figure 2. The sequence of 
recursive calls in calculating f (n) according to (4) 
will correspond to the passage through the tree D, 
along its left branch from the root f (n) down to f 
(2). 
 

 
  If we rewrite function (4) in the form (5), then, 
contrary to expectations, it will not work more 
slowly. The scheme of recursive calls on it will 
just exactly coincide with the corresponding call 
scheme for function (4), and the absence of 
additional local variables a and b in the 
calculations will even lead to some decrease in 
the calculation time. This happens because in the 
assignment v [n]: = fbase2 (n-1) + fbase2 (n-2), 
recursive calls are realized only at the expense of 
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the first term, and when it comes to the second 
term, its value is in the form v(n-2) is already 
among the elements of the base in the form of an 
indicator of completion of calculations. 

Figure 2. Diagram of recursive calculations with 
a dynamic rule (base) for the function f (n) = 

fbasel (n) with n = 6 
 

Figure 3. Diagram of recursive calculations with 
a dynamic rule (base) for the function f (n) = 

fbase2 (n) with n = 6 
 

  

When working with a dynamic rule(base) β, it is 
not always possible to get access to the sets of 
values of its parameters as easily as it was in 
examples (3) and (4). There, due to the specifics 
of the problem and the algorithm used, it was 
actually possible to organize direct access to the 
required values. In general, it is important not to 
overload the base with unnecessary elements. 
With a "large" base, checking for completion in 
each recursive call can be very laborious. 
Moreover, the dynamics of the rule (base) implies 
not only its expansion, but also a possible 
narrowing. If, for one reason or another, after a 
specific recursive call, certain sets of values can 
no longer be used as indicators for completing 
calculations, it is advisable to remove them from 
the base. 
In the next version of the program-function (6) of 
calculating f (n), the elements added to the base 
are not used as indicators of completion of 
calculations in recursive calls, but only as values 
in deferred calculations. 
 

 
For end of the given item we needed to formulate 
and prove the statement about quantity of 
recursive calls at calculation of value of function 
Fibinacii under the program (2).  
The theorem 1. The quantity k (n) recursive calls 
at function evaluation Fibonacci f (n) by (2) is 
equal to the program. 
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 The proof for function to (п) by obvious image 
in the following recurrent ratio are carried out: 

 
From here we have: 

 
Proceeding from the general theory of linear 
returnable sequences, it is uneasy to receive at the 
final formula for calculation to (п). In it also we 
shall engage. For the further reasoning's it is 
convenient for us to predetermine k (n) for the 
whole negative values п, believing k (n) =0 at 
n<0. Using K.Aiversona's notation [3], (8) it is 
possible to copy as: 

 
Let's remind, that K.Aiverson, the author of the 
programming language of APL, has entered into it 
a design of a kind [L], where L a logic condition : 

[𝐿] = ቄ
1, 𝐿 = 𝑇𝑟𝑢𝑒
0, 𝐿 = 𝐹𝑎𝑙𝑠𝑒

 

This simple notation turned out to be very useful in 
transformations and calculations of various sums [4, 
p. 403-422], [5, p. 50]. 

Let G(z) be the generating function for k(n). Then 

 

And therefore, 

 
Let p (z) and Q(Z) - accordingly numerator and a 
denominator of the right part (10) and  

 
Then we have: 

 

 
From Theorem1 on the expansion of the rational 
function P (z) / Q (z) in a power series in the case 
of different roots of Q (z) [7 p. 374] for our case 
we get: 

 
Where  

 
Using (11) and (12), the last relation we have: 

 
From here 

 
and (7) it is proved. 

Investigation 1.  From (7) for and the Bine 
formula [7, p. 331] implies that 

 
Investigation 2. In the binary tree of recursive 
calls when calculating f(n), there are vertices 
calculations on f(n). 

 
If formula (13) could be anticipated in one 
way or another, for example by considering 
the first few terms of the sequence k(n), then 
its proof could be carried out by the method of 
mathematical induction. In this case, the 
statement of the theorem would follow from 
the recurrence relations (8) and the Binet 
formula [7 p. 331]. 
Indeed, 7 for n = 0 and n = 1, relation (13) is 
valid: 
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Let (13) be satisfied for n = m-2 and n = m-1 (m> 
= 2): 

 
But in this case 

 
That is, the induction is justified and the 
formula (13) is proved. 
 
Let us now show relation (7). For n = 0 and n 
= 1 it is valid. Let n> = 2. Applying Binet's 
formula [7, p. 331] in (13) to f (n + 1), we 
obtain (7). 
 

3. Returnable Sequences 
We shall consider one more example on 
рекурсию with dynamic rule (base). Let to — 
natural number, C0, C1..., Ck-1 — real numbers 
also there is a returnable equation of the order to 
general view: 

 
This equation is a recurrent and generates 
numerical sequence: 

 
let's make the recursive program for calculation 
of the general member (15). 
Let files of factors with = (C0, CI are set..., Ck-i) 
and initial members 

 

To write recursive program - function with 
static base {V0, VI..., Vk-i} calculations V n (n 
= to, to 4-1...) work does not make. Those is, 
for example, function rbase (n). It is 
supposed, that a variable to and files with and 
v are in the field of visibility rbase (n): 

 

Calculations on rbase (n) are very laborious 
even for п> 35 because of the rapidly 
growing number of recursive calls along with 
n. 
Let's construct analogue for rbase (n) function 
with dynamic rule (base) rbase1 (n.) we shall 
count, that a variable k matrix c and v are in 
the field of visibility rfeasel (n), under v is 
preserved not less п elements (n>= к), and 
they are initiated by initial values and zero: 
v = (v0, v1..., vn-1 ,0,0...). Then rbase1 (n) 
could look as follows: 

Originally the base will consist of all nonzero 
elements of a matrix v. Each recursive call 
expands base on one nonzero element v. We 
shall note, that rbasel (n) — already rather 
effective program function with quantity of 
recursive calls at n> = to, equal to (п — to + 
1). Thus only in п — to + 1 from them 
calculations are really spent, and in other cases 
all terminates on values from extending base. 

 

 

Recursive function rbase2 (n) with dynamic 
rule (base) is arranged the same as and fbase1 
(n), but for it is not required preliminary 
initiation of a "tail" part of a file v by zero. 
There is enough in the field of visibility rbase2 
(n) to define initial value of a variable s, equal 
to. The size s will serve further the counter of 
quantity of elements already placed in 
dynamic rule (base). Quantity of recursive 
calls at calculation up to rbase2 (n) same, as 
well as at calculation on rbasel (n). 
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4. Binomial coefficient 
Let   n  and m  the non-negative integers 

numbers  0 < = m < = n . 
to calculate under the following recurrent 
formula: 

 
note using operations of multiplication or 
division and generating known triangle. 
Direct calculation of coefficient C(п, т) on 
"true" recursive program – function already  

 

 
at п> = 40 becomes rather bulky and 
consequently it is difficultly feasible for real time. 
At the same time anything in this case does not 
interfere with the organization of recursive 
calculations with dynamic rule (base). Let in the 
program, where formed function C2 will be located 
(n, m) calculations of binomial factors, are available 
definitions: 

 
We initialize a part of a matrix v under base as 
follows: 

 

 
According to the given fragment initially to 
dynamic rule (base) nonzero elements of a matrix v 
[i, j]: v[i,0] = 1  (i = 0..., n- т); v[j, j]= 1 (j =0...m). 

Subsequently in a body of function С2 (n, т) the 
base will extend replacement of zero values v [i, j] 
accordingly on calculated values of coefficient  
C (i, j) (i = 0..., n-т, j =0,...,m). We shall note the 
following fact. Generally the matrix v should 
contain (n+1)^2 elements. For accommodation of 
triangle Pascal it is necessary (n/2+ 1)*(п-1) 
elements. Really at calculation of concrete 
coefficient C(п, т) for it is required base only 
(т + 1). (n- m + 1) elements. It is so much 
elements also are exposed to initial initialization. 
Program-function of calculation of binomial 
coefficients C2(n, m) in this case could be 
written down so:  

 

 
The finding of coefficient  C(п, т) on this 
recursive program - function calculations it is not 
spent and required no more (m + 1)*(n-m + 1) 
recursive references with the same quantity of 
operations of addition at the postponed calculations. 
Therefore, an obstacle for carrying out of 
calculations now can be only a range of allowable 
integer values. In our case received values should 
not surpass size 263-1= 9223372036854775807. On 
Figure 4 big and small squares designate 
elements of triangle for п = 8. At a finding of 
coefficient C(8,5) on program - function С2 to 
dynamic rule (base) the elements corresponding to 
the squares are originally attributed. Then, only the 
elements corresponding to the large blackened 
squares located in rows from the first to the third 
in the selected parallelogram and from left to 
right along the lines are sequentially calculated 
and added to the base. Small blackened squares 
correspond to elements of Pascal's triangle that 
are not involved in the calculation. 
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Figure 4. Recursion with dynamic rule (base) at 

calculation with (8,5) under program С2 

 

5. Conclusion 

In this paper, the researchers obtained an increase 
in the speed of the recursive algorithm through a 
dynamic rule (rule) that changes during the 
implementation process. The dynamic rule(base) 
often allows avoiding repeated calculations for 
the same sets of parameter values, which reduces 
the number of repeated calls and simplifies 
calculations. A dynamic rule mechanism was 
implemented using simple, well-known examples 
to calculate Fibonacci sequences, repeated linear 
sequences of the general shape, and binomial 
coefficients. 
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