—— T |
__S.J.LT.N..Vol :4:No:2/(2016) ~=

—

Journal homepage: www.sabauni.net/ojs

S.J.I.T.N
aba Journal of
Saba Journal of Information Technology and Networking (SJITN) @ Iomtian Technology

and Networking

Article
Using XML as NoSQL Database in .NET and Comparing it with SQL Database

Dr.Abdualmajed Al-Khulaidi

Sana’a University, Yemen

Article info Abstract

Article history: This scientific paper intends to explore the use of XML as a da-

tabase as being a NoSQL type and the functions it carries out.
Accepted Jan, 2016 Lo i
Some of its important functions are to store and transfer data. It

Keywords: also tackles another point as well; how to use XML database in

NET by using C# language. To clarify such points, examples
Is\gi%];ggiz?se’ are provided to show the processes of adding, reading, deleting,
XML, updating and searching for data by using XML in C#. The pa-
HTML . per further draws a comparison between NoSQL and SQL data-

bases. The comparison is conducted to incorporate a number of
points: database structuring, type of data they store, querying,
scaling, support, reliability, and need for storing complex data
and querying for it.

* Corresponding author: Dr. Abdualmajed Al-Khulaidi
E-mail: alkhulaidi@mail.ru

© 2016 Saba Journal of Information Technology and Networking, Published by Saba University. All Rights Reserved.,

=

SJILT:N--Vol:4:No.2.(2016)

1. Introduction

Before initiating this paper, it is important to
introduce the types of databases. There are sev-
eral types among others are: network database,
hierarchical database, relational database, ob-
ject-oriented database ...etc. Most famous of
which is the relational database as its fame is
similar to that of Oracle, SQL Server, MySQL,
Access. More importantly is that relational data-
bases store or organize data in tables, which are
linked in the form of relational models. Another
set of database, OOP Database, relies on having
type is Document Store or NoSQL database in
which data is stored in the form of encoded files
in XML or JSON format or in the form of Word
or PDF format.

XML is not a programming language, yet it is
designed to transmit and store data. It is a fam-
ily of Extensible Markup Language which also
includes the well-known HTML language. This
language is a subset of the Standard Generalized
Markup Language SGML which first appeared
in 1960, that is, about 30 years before the World
Wide Web came to function. It assists in mark-
ing up and coordinating as well as organizing
exchanged documents and emails via the Net.
The family of marking up languages is featured
by using tags in the form of parenthesizes such
as <>, and having a tree-like structure. While it
lacks any instructions or processes, its function
is limited to mark up contents with certain codes
that are understood by browsing software. It is
known that HTML is a descriptive language used
to display data on a web page. While some think
that XML language is different from HTML, it is
possible to argue that what links both languag-
es is that they are subsets of the same language.
It is well known that HTML uses a very limited
number of tags which enables browsers to inter-
pret these tags or codes automatically in order to
coordinate the proper display of data on a web
page.

XML files do often offer benefits in terms of not
needing mysql databases or other similar data-
bases. The benefit is incorporated in making a
itable and enabling it to store information

that is transmitted to it. Via using XML files, it
is possible to save and display data in an HTML
page without the need for any programming lan-
guages. An example of XML which allows the
saving of information is a CSS file permitting the
saving of styles.
1.1 XML Tree Structure
XML documents are formed as element trees.
An XML tree starts at a root element and branch-
es from the root to child elements [7,8].
All elements can have sub elements (child ele-
ments):
<root>

<child>

<subchild>.....</subchild>

</child>

</root>

1.2 An Example XML Document
<?xml version="1.0" encoding="UTF-8"7>
<bookstore>
<book category="cooking”>
<title lang="en”>Everyday Italian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>
<price>30.00</price>
</book>
<book category=""children”>
<title lang="en”>Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>
</book>
<book category="web’>
<title lang="en”>Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>
</book>
</bookstore>

1.3 XML Functions

XML functions could be classified into three
types [9,10]:

A benefit could be obtained from XML within
one website:

1. This benefit is often two faced.

The use of XML files as databases:

This could be through either through the use of

S.J.L.T.N.- Vol :4:No.2'(2016)

XML documents to store data or the conversion
of a group of documents into a database by using
one of the following applications.

2. Making use of XML files when ex-
changing data among two or more
websites

We often hear and realize the great cooperation
in information and data sharing among various
websites. Such a feature allows us to easily post
our favored links in Delicious on our Facebook
and Twitter pages and other social networking
websites. The users of Good reads website also
display their updates on Twitter and Facebook. A
sufficient example for data/ information sharing
among websites is Friend Feed which displays
summaries of most social networks. All of that is
being done through XML, that is, either through

RSS files or other XML files.

3. Making use of XML when sharing
data on computers or other devices
and various applications

Let’s take Twitter as an example. I can log in to
my Twitter account and read my friends’ updates
on Twitter through:

www.twitter.com, my mobile phone, Desk/Lap-
top Computer. All of these means deal with the
same database, and the same updates are dis-
played. Yet, each means/ device is programmed
by a different language and functions differently.
All of this is done by the benefits and features
offered by XML.

2. Using XML Files as NoSQL Databases in .net
NoSQL is a new model or type of database man-
agement system. It follows a different model than
the older and traditional models which follow the
model of linked or tied tables (relational data-
bases). The most outstanding difference between
these two models is the use of tables. Unlike
relational database, NoSQL does not consider ta-
bles as the foundation element for constructing
database. For such a reason, NoSQL is used as
an alternative or substitute for SQL language in
terms of dealing with data.

XML is one model of a NoSQL database and it is
not a programming language. Yet, we could state

posed with known and specific rules. It is very
similar to HTML in terms of writing its codes by
using tags. Unlike HTML, XML is not limited
in terms of the use of words; a designer could
use any word to create the root and nodes and
sub-nodes. In addition, XML is used to store data
regardless of how they are displayed. An XML
file is of a small size compared to database files
and is easily accessed and dealt with. Some of its
functions may include the storing and sharing of
data among databases. A table could be exported
to an XML file while an XML file could be im-
ported. In addition, an XML file is composed of a
root, nodes and sub-nodes. The attribute of a node
could be specified, a matter which is known to
be “Attribute.” Such a linguistic item represents
the characteristic of a node or (an element). In
et (dot net), XML is dealt with through LINQ.
LINQ is from Microsoft to unite the means of
using data irrespective of data sources. The Net
Framework library has offered a means to easily
deal with such files through XML or XML. LINQ
libraries. These two libraries provide objects and
functions/subroutines enabling us to deal with
XML through creating a file, or updating the file
or even deleting or performing search in it.

Let’s take a look at the following example, illus-
trating how to use XML in C#.

Required Libraries:
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Globalization;
using System.Ling;
using System.Windows.Forms;
using System.lO;
using System.Xml;
using System.Xml.Ling;
We design a Class by the name of Emp as fol-
lows:
class Emp
{
public int ID { get; set; }
public string Name { get; set; }
public string Gender { get; set; }
public int Age { get; set; }
public string Imgstring { get; set; }

that it takes the form of textual writings, com- ‘

e

S.JLET:N--Vol4:No.2.(2016)

}

General Variables:

private XElement _xel,_empinfo, id, name,
_age, image;

private readonly XmIDocument _doc =new Xm-
IDocument();

private XmINode node;
private readonly List<Emp>
List<Emp>();

private int _pos;

private const string Xpath = @”D:\emp.xml”;

@,

private string _imgstr = ;

_emp = new

Function Filling Field
private void Fill(int pos)
{
id_txt.Text = emp[pos].ID.ToString(Cultureln-
fo.InvariantCulture);
name_txt.Text = _emp[pos].Name;
age txt.Text=_emp[pos].Age.ToString(Culture-
Info.InvariantCulture);

pic.Image = StringTolmage(_emp[pos].Img-
string);
(“Male if (_emp[pos].Gender == “

Male_rdbtn.Checked = true;
else
Female rdbtn.Checked = true;

}
A Function for Converting an Image into a Textu-
al Series to be Easily Saved in an XML File:
private static string ImageToString(Image img)

{

var m = new MemoryStream();
img.Save(m, System.Drawing.Imaging.Image-
Format.Jpeg);
return Convert. ToBase64String(m.ToArray());

}
A Function for retrieving an image from its tex-
tual format:
private static Image StringTolmage(string img-
string)

{
var imgbytes = Convert.FromBase64String(img-
string);
var m = new MemoryStream(imgbytes);

return Image.FromStream(m);

A Code for Creating an XML File and Adding a
Node to the File:

private void write btn_ Click(object sender,
EventArgs e)
{

var found = false;

if (File.Exists(Xpath))

{

_xel = XElement.Load(Xpath);

foreach (var tin _emp)

{

found = t.ID.ToString(Culturelnfo.InvariantCul-
ture) == id_txt.Text;

h

}

else

_xel = new XElement(“Info”);
if (!found)

{

var gender = Male rdbtn.Checked ? “Male” :
“Female™;

_empinfo = new XElement(“EmpInfo”);
_empinfo.SetAttribute Value(“EmplInfo”,
ployeelnformation”);

_id = new XElement(“Eld”, id_txt.Text);
_name = new XElement(“EName”, name_txt.
Text);

_name.SetAttribute Value(“Gender”, gender);
_age =new XElement(“EAge”, age txt.Text);
_image = new XElement(“Elmage”, imgstr);
_empinfo.Add(_id, name, age, image);
_xel.Add(_empinfo);

_xel.Save(Xpath);

_pos =_xel.Nodes().Count() - 1;
read_btn_Click(sender, ¢);

}

else

{

MessageBox.Show(@ This sequence is present
,choose another sequence “, “7);

j

b
At this point, it is important to check if the file is

available or not. If so, we read it only. Then, we
make sure of the non-recurrence of the sequence
for more than once and add the element to the
file. If there is no file, then we create one file by
creating its major root with the name Info and a

‘GEm_

S.J.L.T.N.Vol:4:No:2°(2016)

sub-node with the name Emplnfo to include the
following nodes: (ID, Name, Age, Image). While
Name node has Gender as an attribute the Emp-
Info node has an attribute as EmpInfo.

There are, for sure, various ways used in adding
an element to an XML file. We have chosen XE-
lement to be included in the field of XML.Linq
names. This is the easiest way to create a file and
add elements and the attributes of a specific ele-
ment of those elements.

Content Reading Code:
private void read_btn_Click(object sender, Even-
tArgs e)

{

srch_btn.Enabled = true;
_emp.Clear();

if (!File.Exists(Xpath)) return;
_doc.Load(Xpath);
var xmlElement = doc[“Info”];

if (xmlElement != null)
_node = xmlElement[“EmpInfo™];
while (_node !=null)

{
var element = node[“EId”];

if (element != null)

{
var xmlElement] = node[“EName”];
if (xmlElement] != null)

{
var elementl = node[“EAge”];

if (elementl != null)

{
var xmlElement2 = node[*“Elmage”];
if (xmlElement2 != null)
_emp.Add(new Emp

{

ID = int.Parse(element.InnerText),
Name = xmlElement].InnerText,
Gender = xmlElement1.Attributes[“Gender”].In-
nerText,
Age = int.Parse(element1.InnerText),
Imgstring= xmlElement2.InnerText ;

h
j
}
}

_node = node.NextSibling;

}

Fill(_pos); }

There are also various ways to read a file. Here,
we use two objects, being XmlIDocumnet and
XmlNode, both of which are within the field of
XML names. To do so, we first apply the main
node and the node following it to the XmINode
variable object. That is, EmpInfo node is applied
to the variable Node through which we pass to the
node which it contains and extract its contents.
Then, we move to each node by using NextSib-
ling attribute, that is, the next node. Yet, reading a
node content is done through InnerText attribute
after mentioning the name of the node. To reach
the attribute of a specific node, we first mention
the name of the node followed by the name of the
attribute, and then InnerText. As you may see, it
is a very simple to reach the content of any node
in a file.

Content Update Code:
private void update btn_ Click(object sender,
EventArgs e)
{
var xmlElement = doc[“Info”];
if (xmlElement != null)
_node = xmlElement[“EmpInfo™];
while (_node !=null)
{
if (_node[“EId”] !=null && node[“EId”].Inner-
Text ==1id_txt.Text)
{
_emp[_pos].ID = int.Parse(_node[“EId”].Inner-
Text = id_txt.Text);
_emp[_pos].Name = node[“EName”].InnerText
=name_txt.Text;
if (Male_rdbtn.Checked)
{
_emp[_pos].Gender = _node[“EName”]. Attri-
butes[“Gender”’].InnerText = Male rdbtn.Text;
}

else

{

_emp[_pos].Gender = node[“EName”]. Attri-
butes[“Gender”’].InnerText = Female rdbtn.Text;
}

_emp[_pos].Age = int.Parse(_node[“EAge”].In-
nerText = age txt.Text);

_emp[_pos].Imgstring = node[“Elmage”].In-
nerText = ImageToString(pic.Image);

b
_node = node.NextSibling;

}
_doc.Save(Xpath);
read_btn_Click(sender, ¢);

}
Deletion Code:

private void delete btn_ Click(object sender,
EventArgs e)

{

var xmlElement = doc[“Info”];

if (xmlElement != null)

_node = xmlElement[“EmpInfo”];

while (_node !=null)

{

var element = node[“EName”];

if (element != null && element.InnerText ==
name_txt.Text)

{

if (_node.ParentNode !=null) node.ParentNode.
RemoveChild(_node);
_emp.RemoveAt(int.Parse(id_txt.Text) - 1);

}

_node = node.NextSibling;

b

_doc.Save(Xpath);

_Ppos--;

if (_pos <0)

_pos =0;

Fill(_pos);

b

We delete a specific node according to the name
by using this line:
node.ParentNode.RemoveChild(node);

The above line deletes EmplInfo node which be-
longs to the main node Info. When Empinfo node
is deleted, all other embedded nodes will be de-
leted including their contents or elements.

The Search Code:

private void srch_btn_Click(object sender, Even-
tArgs e)
{
if (!File.Exists(Xpath)) return;
doc.Load(Xpath);

S.JLET:N--Vol4:No.2.(2016)

var xmlElement = doc[“Info”];

if (xmlElement != null) node =
ment[“EmpInfo”];

while (_node !=null)

{

if (_node[“EName”].InnerText == Srch_txt.Text.
Trim())

{

id_txt.Text = node[“EId”].InnerText;
name_txt.Text = node[“EName”].InnerText;
string gender = node[“EName”].Attributes[*-
Gender”].InnerText;

age txt.Text=_node[“EAge”].InnerText;
pic.Image = StringTolmage(node[“Elmage™].
InnerText);

_pos = int.Parse(id_txt.Text) - 1;

if (gender == “34 ,)

Male_rdbtn.Checked = true;

xmlEle-

else

Female rdbtn.Checked = true;

}

_node = node.NextSibling;

1

Reporting Code:

private void button2 Click(object sender, Even-
tArgs e)

{

var rf = new reportform();
rf.rv.LocalReport.EnableExternallmages = true;
var ds = new Microsoft.Reporting. WinForms.Re-
portDataSource(“emp”, emp);

var param = new List<Microsoft.Reporting. Win-
Forms.ReportParameter>

{

new Microsoft.Reporting. WinForms.ReportPa-
rameter(“id”,
_emp[_pos].ID.ToString(CultureInfo.Invariant-
Culture)),

new Microsoft.Reporting. WinForms.ReportPa-
rameter(“name”, emp[pos].Name),

new Microsoft.Reporting. WinForms.ReportPa-
rameter(‘“‘age”,

emp[pos].Age.ToString(CultureInfo.Invari-
antCulture))

B

var im = StringTolmage(_emp[_pos].Imgstring);
const string temp = “c:\\Pics\\temp.jpg”’;

ﬁ

— :;S..«LL&LM-EMOI'A :N0:2(2016) e
im.Save(temp); rf.rv.LocalReport.SetParameters(param);

param.Add(new Microsoft.Reporting. WinForms. rf.ShowDialog();
ReportParameter(“image”, “file:///c:\\Pics\\temp. ~ File.Delete(temp); }
jpg”));

rf.rv.LocalReport.DataSources.Add(ds);

'ﬂ,ﬁﬁ-ﬁlﬂ,ﬂ—trﬂhﬁ SRR o A
Gof oMM T T by - M, o ‘13 v
i—!-.‘ e S bl e st g s L _ R L]
:I' BE@ B-fBRR o FD
1t TS| e
Ii- e Eu—_—:u._]
[]
i L]
e bore e
1 - [
. b i
[] s 0 W T Bl i
(= L=

l'.i.;iui'.li;l.”.
o e [[am [s]

Ceellim e o g

[T S
anay »

e -

| I
k ||.x 2 A
B WS e I -‘:_A.;A‘-‘”'-“-“‘! e i e [T =, i

Fig. 2: Implementation of the Program in C# by using (NoSQL) XML database

e

S

SJILTN-Vol:4:No.2,(2016)

Just like XML database, an NoSQL database
could deal with Asp.net in terms of designing and
developing dynamic websites instead of dealing
with SQL database such as Oracle, Mysql, and
Mssql server.

4.Comparing NoSQL Database with
SQL Database

Before drawing a comparison between NoSQL
databases and SQL databases, let's take a look at
the different database management systems.

saL NoSQL

Fig. 3: Showing the Way of Comparing NoSQOL and
SQOL Databases

4.1 Relational Database Management Systemns
(SQL)

Relational Database Systems took its name after
the model it is based on -The Relational Model,
which was discussed earlier. These systems are
and will remain for quite some time the best op-
tion to keep data reliable and safe. Not only that,
they are also efficient. Relational database man-
agement systems require defined and clearly set
schemas.

These schemas are much like tables; columns to
contain a certain amount of information and to
present the type of information in each record in
addition to rows presenting the inputs.

Some of the most common relational database
management systems include the followings [11]:
» SQLite: A very powerful and embedded rela-
tional database management system.

* MySQL: The most popular and commonly used
RDBMS.

*PostgreSQL: The most advanced, SQL-compli-
ant and open-source objective-RDBMS.

4.2 NoSQL Database Systems

NoSQL database systems do not come with a
the one used (or needed) by structured

relational solutions. There are many applications;
each application operates very differently and
serves specific needs. Either these schema-less
solutions allow an unlimited formation of inputs
or entries, rather take, a very simple form but
extremely efficient for operating as useful key
based value stores[12,13].

NoSQL databases do not have a common way to
query the data (i.e. similar to SQL of relational
databases) and each solution provides its own
query system.

Examples of NoSQL databases are Jackrabbit
Mongodb, XML, Riak, CouchDB, and Cassan-
dra.

Term Matching Databases

Redis

Data-Structures Server

Tuple Store Gigaspaces
Coord

Apache River

ZopeDB
DB4O
Shoal

CouchDB
Mongo
Jackrabbit
XML Databases
ThruDB
CloudKit
Perservere

Riak Basho
Scalaris

Object Database

Document Store

Wide Columnar Store Bigtable
Hbase
Cassandra
Hypertable
KAl
OpenNeptune
Qbase

KDI

Fig. 4: Classifications NoSQL Database

- MongoDB: Cross-platform document-oriented

database system that eschews the traditional ta-
ble-based relational database structure in favor
of JSON-like documents with dynamic schemas
making the integration of data in certain types of
applications faster and easier [10].

- Cassandra: Highly scalable, high performance
distributed database designed to handle large
amounts of data across many commodity Serv-

S.J.I.T.N.- Vol :4:No.2(2016)

ers, and that provide high availability with no sin-
gle point of failure [14].

- XML database is a data persistence software
system that allows data to be specified, and some-
times stored, in XML format. These data can be
queried, transformed, exported and returned to a
calling system [3]. XML databases are a flavor
of document-oriented databases which are in turn
a category of NoSQL database (meaning Not
(only) SQL).

4.3 A Comparison of SQL and No-SQL Data-
base Management Systems

In order to reach a simpler, understandable con-
clusion, let’s analyze the differences between
both SQL and No-SQL database management
systems:

4.3.1 Structure and Type of Data Being Kept:

SQL/Relational databases require a structure
with defined attributes to maintain or keep the
data, unlike NoSQL databases which usually al-
low free-flow operations.

4.3.2 Querying:

Regardless of their licenses, all relational data-
bases apply the SQL standard to a certain degree
and thus, can be queried using the Structured
Query Language (SQL). NoSQL databases, on
the other hand, do not apply a unique way to op-
erate the data they manage.

4.3.3 Scaling:

Both solutions are easy to scale vertically (i.e. by
increasing a system’s resources). However, being
more modern (and simpler) applications, NoSQL
solutions usually offer a much easier means to
scale horizontally (i.e. by creating a cluster of
multiple devices or machines).

4.3.4 Reliability:

When it comes to data reliability and safe guaran-
tee of performed transactions, SQL databases are
still the best option

4.3.5 Support:
Relational database management systems have a
long history of strong performance and applica-

tion. They are extremely common and their sup-
port is very easy to find both free of charge and/or

paid. If an issue or problem arises, it is therefore
much easier to solve such a problem than in the
case of recently-popular NoSQL databases - es-
pecially if the said solution under focus is com-
plex in nature (e.g. MongoDB).

4.3.6 Complex data keeping and querying needs:

By nature, relational databases are the ultimate
solution for complex querying and data keeping
needs. They are much more efficient and definite-
ly excel in this domain.

4. 4The primary differences between SQL and
NoSQL
4. 4.1SQL Tables and NoSQL Documents

SQL databases provide a store of related data
tables. For example, if you run an Online book
store, book information can be added to a table
named book:

e JavaScript: [Darren|ebook [29.00
S Novice to | Jones

L Ninja

N

N

[N

S

oo

o~

(o)

S Jump Start [Shaumik- | ebook |29.00
= Git Daityari

f

=

N

N

S

oo

o~

(o)}

Every row is a different book record, the design
is rigid; you cannot use the same table to store
different information or insert a string where an
integer is expected.
NoSQL databases store JSON-like field-value
pair documents, e.g.
{

ISBN: 9780992461225,

title: “JavaScript: Novice to Ninja”,

author: “Darren Jones”,

format: “ebook”,

price: 29.00
§
Similar documents can be stored in a collection,
which is analogous to an SQL table. However,
you can store any data you like in a

o

)

~SIELT:N--Vol-4:No.2 (2016)

the NoSQL database won’t complain. For exam-
ple:
{

ISBN: 9780992461225,

title: “JavaScript: Novice to Ninja”,

author: “Darren Jones”,

year: 2014,

format: “ebook”,

price: 29.00,

description: “Learn JavaScript from scratch!”,

rating: “5/57,

review: [

{ name: “A Reader”, text: “The best JavaScript
book I’ve ever read.” },
{ name: “JS Expert”, text: “Recommended to

novice and expert developers alike.” }
b
SQL tables create a strict data template, so it’s
difficult to make mistakes. NoSQL is more flexi-
ble and forgiving, but being able to store any data
anywhere which can lead to consistency issues.

4. 4.28SQL Schema and NoSQL Schema-less

In an SQL database, it’s impossible to add data
until you define tables and field types in what’s
referred to as a schema. The schema optionally
contains other information, such as —
* Primary keys — unique identifiers such as the
ISBN which apply to a single record
* Indexes — commonly queried fields indexed to
aid quick searching
* Relationships — logical links between data
fields
* Functionality such as triggers and stored pro-
cedures.
Your data schema must be designed and imple-
mented before any business logic can be devel-
oped to manipulate data. It is possible to make
updates later, but large changes can be compli-
cated.
In a NoSQL database, data can be added any-
where, at any time, there’s no need to specity a
document design or even a collection up-front,
for example, in MongoDB the following state-
ment will create a new document in a new book
collection if it’s not been previously created:
db.book.insert(
:9780994182654,

—

title: “Jump Start Git”,
author: “ShaumikDaityari”,
format: “ebook”,

price: 29.00

);
(MongoDB will automatically add a unique _id
value to each document in a collection. You may
still want to define indexes, but that can be done
later if necessary.)

A NoSQL database may be more suited to proj-
ects where the initial data requirements are dif-
ficult to ascertain. That said, don’t mistake dif-
ficulty for laziness: neglecting to design a good
data store at project commencement will lead to
problems later.

4.4.3 SQL Normalization and NoSQL Denor-

malization

Presume we want to add publisher information to
our book store database, a single publisher could
offer more than one title so, in an SQL database,

we create a new iublisher table:

SP0O01 SitePoint | Australia |[f e e d -
back@
sitepoint.
com

We can then add a publisher _id field to our book
table, which references records by publisher.id:

Nov-

JavaScript:
ice to Ninja
ebook
29.00
SP001

9780994182654 9780992461225

Shaumik Daityari | Darren Jones

Jump Start Git

ebook
29.00
SP0OO1

This minimizes data redundancy; we’re not re-
peating the publisher information for every book
only the reference to it. This technique is known

S.J.L.T.N.- Vol :4:No.2'(2016)

as normalization, and has practical benefits. We
can update a single publisher without changing
book data.
We can use normalization techniques in NoSQL.
Documents in the book collection —
{

ISBN: 9780992461225,

title: “JavaScript: Novice to Ninja”,

author: “Darren Jones”,

format: “ebook”,

price: 29.00,

publisher_id: “SP001”
h
— reference a document in a publisher collection:
{

id: “SP001”

name: “SitePoint”,

country: “Australia”,

email: “feedback@sitepoint.com”
b
However, this is not always practical, for reasons
that will become evident below. We may opt to
denormalize our document and repeat publisher
information for every book:
{ISBN: 9780992461225,

title: “JavaScript: Novice to Ninja”,

author: “Darren Jones”,

format: “ebook”,

price: 29.00,

publisher: {

name: “SitePoint”,
country: “Australia”,

email: “feedback@sitepoint.com”} }
This leads to faster queries, but updating the pub-
lisher information in multiple records will be sig-
nificantly slower.

4. 4.4 SQOL Relational JOIN and NoSQL

SQL queries offer a powerful JOIN clause. We
can obtain related data in multiple tables using a
single SQL statement. For example:

SELECT book.title, book.author, publisher.name
FROM book
LEFT JOIN book.publisher_id ON publisher.id;

This returns all book titles, authors and associat-
ed publisher names (presuming one has been set).
NoSQL has no equivalent of JOIN, and this can
shock those with SQL experience. If we used
normalized collections as described above, we

would need to fetch all book documents, retrieve
all associated publisher documents, and manually
link the two in our program logic, this is one rea-
son denormalization is often essential.

4. 4.5 SQL and NoSQL Data Integrity

Most SQL databases allow you to enforce data
integrity rules using foreign key constraints (un-
less you’re still using the older, defunct MyISAM
storage engine in MySQL). Our book store could
eensure all books have a valid publisher id code
that matches one entry in the publisher table, and
*not permit publishers to be removed if one or
more books are assigned to them.

the schema enforces these rules for the database
to follow, it’s impossible for developers or users
to add, edit or remove records, which could result
in invalid data or orphan records.

The same data integrity options are not available
in NoSQL databases; you can store what you
want regardless of any other documents. Ideally,
a single document will be the sole source of all
information about an item.

4. 4.6 SQL and NoSQL Transactions

In SQL databases, two or more updates can be
executed in a transaction — an all-or-nothing
wrapper that guarantees success or failure. For
example, presume our book store contained order
and stock tables, when a book is ordered we add a
record to the orderTable and decrement the stock
count in the stock table. If we execute those two
updates individually, one could succeed and the
other fail — thus leaving our figures out of sync,
placing the same updates within a transaction en-
sures either both succeed or both fail.

In a NoSQL database, modification of a single
document is atomic, in other words, if you’re up-
dating three values within a document, either all
three are updated successfully or it remains un-
changed. However, there’s no transaction equiva-
lent for updates to multiple documents, there are
transaction-like options, but -at the time of writ-
ing this article- these must be manually processed
in your code.

4. 4.7 SOL vs NoSQL CRUD Syntax
Creating, reading updating and deleting data is

the basis of all database systems. In essence —
*SQL is a lightweight declarative lan

2

S.J.I'T:N--Vol:4:No.2.(2016)

deceptively powerful, and has become an inter-
national standard, although most systems imple-
ment subtly different syntaxes.

*NoSQL databases use JavaScripty-looking que-
ries with JSON-like arguments! Basic operations
are simple, but nested JSON can become increas-
ingly convoluted for more complex queries.

Table 3 : Comparison between SQL and NoSQL

insert a new book record

INSERT INTO book (| db.book.insert({
'ISBN, “title’, ‘au- [ISBN:
thor') VALUES (“9780992461256”,
9780992461256°, title: “Full Stack
‘Full Stack JavaS- | JavaScript”,

cript’,‘Colin author: “Colin Ih-
Adam Bretz’); rig& Adam Bretz”});

update a book record

Thrig&

UPDATE book db.book.up-

SET price = 19.99 date({ ISBN:
WHERE ISBN =|9780992461256" },{
‘9780992461256’ $set: { price: 19.99 });

return all book titles over $10

SELECT title FROM [db.book.find({ price: {
book >: 10 } },

WHERE price > 10; { 1d: 0, title: 1 });
The second JSON ob-
ject is known as a pro-
jection: it sets which
fields are returned (_id
is returned by default
so it needs to be unset).

count the number of SitePoint books
SELECT COUNT(1) [db.book.count({“pub-

FROM book lisher.name™: “Site-
WHERE publisher _id | Point});
= ‘SP001°; This presumes denor-

malized documents are
used.

return the number of book format types

SELECT format, | db.book.aggregate([{

COUNT(1) AS “total" [$group:

FROM book { id: “$format”,

GROUP BY format; total: { $sum: 1 }

+1);This is known as
aggregation: a new set
of documents is com-
puted from an original
set.
delete all SitePoint books

DELETE FROM book | db.book.remove({“-

WHERE publisher id[publisher.name”:

= ‘SP001’; “SitePoint™});

Alternatively, it’s pos-

sible to delete the pub-

lisher record and have

this cascade to asso-

ciated book records if

foreign keys are speci-

fied appropriately.

The second JSON object is known as a projec-
tion: it sets which fields are returned (_id is re-
turned by default so it needs to be unset).

count the number of SitePoint books
SELECT COUNT(1) FROM book
WHERE publisher_id = ‘SP001’;
count({

“publisher.name”: “SitePoint™});
This presumes denormalized documents are used.
return the number of book format types
SELECT format, COUNT(1) AS “total’

FROM book
GROUP BY format; db.book.aggregate([
{ $group:
{ _id: “$format”,
total: { $sum: 1 }

+1);This is known as aggregation: a new set of
documents is computed from an original set.
delete all SitePoint books
DELETE FROM book WHERE publisher _id =
‘SP001’;
Alternatively, it’s possible to delete the publisher
record and have this cascade to associated book
records if foreign keys are specified appropriate-
ly. db.book.remove({“publisher.name”: “Site-
Point™});

4. 5SQL and NoSQL: High-Level Differences

db.book.

*ﬁ

S.J.L.T.N.- Vol :4:No.2'(2016)

*SQL databases are primarily called as Relational
Databases (RDBMS); whereas NoSQL database
are primarily called as non-relational or distribut-
ed database.

*SQL databases are table based databases where
as NoSQL databases are document based,
key-value pairs, graph databases or wide-column
stores, this means that SQL databases represent
data in form of tables which consists of n number
of rows of data whereas NoSQL databases are the
collection of key-value pair, documents, graph
databases or wide-column stores which do not
have standard schema definitions which it needs
to adhered to.

*SQL databases have predefined schema whereas
NoSQL databases have dynamic schema for un-
structured data.

*SQL databases are vertically scalable where-
as the NoSQL databases are horizontally scal-
able; SQL databases are scaled by increasing the
horse-power of the hardware. NoSQL databases
are scaled by increasing the databases servers in
the pool of resources to reduce the load.

*SQL databases use SQL (structured query lan-
guage) for defining and manipulating the data
which is very powerful; In NoSQL databases
queries are focused on collection of documents,
sometimes it is also called UnQL (Unstructured
Query Language). The syntax of using UnQL
varies from database to database.

*SQL database examples: MySq]l, Oracle, SQLite,
Postgres and MS-SQL. NoSQL database exam-
ples: MongoDB, BigTable, Redis, RavenDb,
Cassandra, Hbase, Neo4j and CouchDb.

*For complex queries: SQL databases are a good
fit for the complex query intensive environment
whereas NoSQL databases are not good fit for
complex queries. On a high-level, NoSQL don’t
have standard interfaces to perform complex
queries, and the queries themselves in NoSQL
are not as powerful as SQL query language.
*For the type of data to be stored: SQL data-
bases are not best fit for hierarchical data storage,
where NoSQL database fits better for the hier-
archical data storage as it follows the key-value
pair way of storing data similar to JSON data.
NoSQL database are highly preferred for large
data set (i.e for big data). Hbase is an example for

this purpose.

*For scalability: In most typical situations,
SQL databases are vertically scalable. You can
manage increasing load by increasing the CPU,
RAM, SSD, etc, on a single server. On the oth-
er hand, NoSQL databases are horizontally scal-
able. You can just add few more servers easily
in your NoSQL database infrastructure to handle
the large traffic.

*For high transactional based application:
SQL databases are best fit for heavy duty trans-
actional type applications, as it is more stable
and promises the atomicity as well as integrity of
the data. While you can use NoSQL for transac-
tions purpose, it is still not comparable and sable
enough in high load and for complex transaction-
al applications.

*For support: Excellent support are available
for all SQL database from their vendors, there are
also lot of independent consultations who can
help you with SQL database for a very large scale
deployments. For some NoSQL database you still
have to rely on community support, and only lim-
ited outside experts are available for you to setup
and deploy your large scale NoSQL deployments.
*For properties: SQL databases emphasizes on
ACID properties (Atomicity, Consistency, Isola-
tion and Durability) whereas the NoSQL database
follows the Brewers CAP theorem (Consistency,
Availability and Partition tolerance)

*For DB types: On a high-level, we can classify
SQL databases as either open-source or close-
sourced from commercial vendors. NoSQL da-
tabases can be classified on the basis of way of
storing data as graph databases, key-value store
databases, document store databases, column
store database and XML databases

5. Conclusion

It is safe to argue that NoSQL represents a very
powerful and new means for data storage and
retrieval in an optimized and smooth manner.
Applying NoSQL is easier to deal with data than
using SQL in this regard.

Criticizing any one of the SQL’s will not help the
aim of this work. If there is a buzz of NoSQL
these days, it doesn’t mean that is a silver bullet
to all your needs. Both technologies (SQL and
NoSQL) are best in what they do. It i

SJILTN-Vol:4:No.2,(2016).

developer to make a better use of them depending
on the situations and needs.

NoSQL databases, by using an unstructured (or
structured) kind of approach, aim to eliminate the
limitations of strict relations, and accordingly, of-
fer many different ways to maintain and efficient-
ly use data for specific usage cases (e.g. full-text
document storage).

References

[1] XML Media Types, RFC 7303. Internet En-
gineering Task Force. July 2014.

[2] XML 1.0 Specification. World Wide Web
Consortium. Retrieved 2010-08-22.

[3] XML and Semantic Web W3C Standards
Timeline (PDF). 2012-02-04.

[4] Fennell, Philip (June 2013). “Extremes of
XML”. XML London 2013: 80—86.d0i:10.14337/
XMLLondon13.FennellO1. ISBN 978-0-
9926471-0-0.

[S]M. Murata, D. Kohn, and C. Lilley (2009-09-
24). “Internet Drafts: XML Media Types”. Inter-
net Engineering Task Force. Retrieved 2012-02-
29.

[6] Extensible Markup Language (XML) 1.1
(Second Edition) . World Wide Web Consortium.
Retrieved 2010-08-22.

[7] Pilgrim, “The history of draconian error han-
dling in XML”. Archived from the original on
2011-07-26. Retrieved 18 July 2013.

[8] Jon Bosak, “Closing Keynote, XML 2006”.
2006.xmlconference.org. Archived from the
original on 2007-07-11. Retrieved2009-07-31.
[9] T. Bray, C. Frankston, A. Malhotra, “Doc-
ument Content Description for XML”, http://
www.w3.0rg/TR/NOTE-dcd.

[10] Obasanjo, D. (2013). Building scalable da-
tabases: Denormalization, the NoSQL movement
and Digg. Retrieved July 15th.

[11] Software Engineering Radio Podcast, Epi-
sode 165: NoSQL and MongoDB with Dwight
Merriman by Robert Blumen and Dwight Mer-
riman: http://www.se-radio.net/2010/07/episode-
165-nosgl-and-mongodb-with-dwight-merriman/
[12] Heise SoftwareArchitekTOUR Podcast
(German), Episode 22: NoSQL — Alternative zu
relationalen Datenbanken by Markus Vélter, Ste-
fan Tilkov and Mathias Meyer: http://www.heise.
r/artikel/Episode-22-NoSQL-Alter-

native-zu-relationalen-Datenbanken-
htm.

[13] Zawodny, J. (2009). NoSQL: Distributed
and Scalable Non-Relational Database Systems.
Linux Magazine web portal, http://www. li-
nux-mag. com/id/7579.

[14] RadioTux Binédrgewitter Podcast (German),
Episode 1: NoSQL by Dirk Deimeke, Marc See-
ger, Sven Pfleiderer and Ingo Ebel: http:/blog.
radiotux.de/2011/01/09/binaergewitter-1-nosql

1027769.

