
S.J.I.T.N Vol .5 No.1 (2017)
1

Article
Detecting Polymorphic No-Operations in Shellcode Based on Mining Techniques

Tawfiq S. Barhoom * , Fady R. Alkhateeb
Information Technology, Islamic University, Gaza, Palestine

Article info Abstract

Article history:

Accepted: April,2017

 Shellcode acts as a weapon to perform Buffer Overflow (BOF), which is

ranked as the most dangerous vulnerability. It consists of three sections that

always transform their parts to be a Polymorphic Shellcode. Solutions avail-

able from Intrusion Detection Systems (IDS) still depend on the signature.

Also, solutions that use data mining depend on Shellcodes with the factor of

including payloads and not getting the high results, so polymorphic and un-

known Shellcodes could not be detected. We proposed a new solution using

a data mining classification technique on special features extracted which de-

pends on the operation code of no operation instructions; which can classify

the packets on the transport layer of the network as clean or buffer overflow

Shellcode attack. This solution can detect unseen Shellcodes.

A dataset generated for malicious packets consists of 500,000 files from

Metasploit No-Operation engines and 72,000 files of a clean dataset from

various types of data. By applying different classification methods on the

dataset which include selected features we specified and evaluating them by

evaluation metrics; it showed that the solution has achieved high accuracy

results with a 94% rate. In contrast, signature based on SNORT IDS detects

only 50.02% of polymorphic Shellcodes in the experiment that was generated

to compare the proposed solution with real IDS system. SVM algorithm was

selected because of the recall rate 99.33% in detecting polymorphic NOOP’s

with low false alarm.

Keywords:
Mining,
Shellcode,
Buffer Overflow,
No-Operations,
Polymorphic.

* Corresponding author: Tawfiq S. Barhoom
 E-mail: tbarhoom@iugaza.edu

© 2017 Saba Journal of Information Technology and Networking, Published by Saba University. All Rights Reserved.

journal homepage: www.sabauni.net/ojs

Saba Journal of Information Technology and Networking (SJITN)

http:// www.sabauni.net/ojs

S.J.I.T.N Vol .5 No.1 (2017)
2

1.Introduction
Information Technology infrastructure suffering
from various vulnerabilities threats especially ze-
ro-day (0day) vulnerabilities which is the main
reason in destroying systems, leaks information,
and causes financial destruction. Buffer overflow
is the most famous type of vulnerability which
can hijack systems, execute remote applications,
and spreading worms. Figure 1 shows that buffer
overflow appears in a high severity and dangerous
vulnerability that is used in cyber-attacks [1] [2].
This type of attacks forced security companies
and security researchers to find optimal solutions
that can protect complete solution that can protect
and avoid systems from being hacked by buffer
overflow.

Figure 1 Top Vulnerability types with a high severity
[2]
Buffer overflow is caused by bad programming
practices used from programmers through work-
ing with memories without any boundary check,
so while writing data to a buffer, it overruns the
buffer’s boundary and overwrites adjacent mem-
ory locations [3].
According to this issue, researchers started put-
ting solutions by advising, using alternative pro-
gramming languages that have built-in protection
against accessing or overwriting data in any part of
a memory. As C and C++ provide ability to work
with the memory without checking the boundaries
of buffers in writing, beside that, advise to stop us-
ing standard library functions and uses safe librar-
ies that check boundaries [4], Microsoft provided
application programming interface (API) rou-
tine to use Point Guard, implemented executable
space protection in the core of operating systems,
created data execution prevention (DEP), invent-
ed address space layout randomization (ASLR),
Return Oriented Programming (ROP) prevent

etc…. Inspite of these efforts, hackers always find
ways, holes, and new techniques to skip these
prevention techniques. To date, network intrusion
detection systems detect and prevent such attacks
by identifying worms and Shellcodes through us-
ing a fixed byte sequence of signature which is
stored in updatable database of previously known
worm’s payload [5]. Concluding that there is no
one solution for this threat, instead, we need doz-
ens of solutions through which every solution
solves one face from buffer overflow faces, so
researchers use static analysis by analyzing the
source code and dynamic analysis that analyses
the applications on runtime. A point of view that
handles this problem from another perspective by
not working on the system itself but working on
the network level and identify the packets trans-
ferred in the network that cause buffer overflow
attacks. In this area there are lots of researches that
detect and prevent the payloads on the network;
but as usual there are techniques used by hack-
ers to evade these approaches. Nowadays, there
lots of engines that produce encrypted Shellcodes
like those in Metasploit Framework [6], ecl-poly
[7], AdMutate [8], or CLET [9]. By digging down
into the structure of a Shellcode, there are main
sections that must be in the Shellcode to make the
overflow successful, which consist of NOP sled,
payload, and return sled. Our work takes NOP
sled section to identify the Shellcode while being
transferred in the network, NOP section can con-
sist of a huge probability of useless instructions
which are generated and obfuscated by Shellcode
engines.
In this Paper, Bernoulli Naïve Bayes, Decision
Tree, and SVM data mining algorithms are used
to be trained on special selected features that are-
extracted from very large amounts of polymor-
phic NOPs in Shellcodes. This allows the classifi-
er to know the patterns which identify this section
of a Shellcode. Therefore, the proposed solution
can alarm that the system under buffer overflow is
being attacked.
The rest of this paper is organized as follows: sec-
tion two; related work, section three; methodol-
ogy, section four; experimentation, section five;
the results of experimentation and section six con-
cludes the paper.

S.J.I.T.N Vol .5 No.1 (2017)
3

2.Related Work
Overflow detection and prevention problems
have been studied since the mid-nineties. How-
ever, many recent researches have been published
to solve this hot problem.
2.1.Static Analysis:
Zhao, Z. et al. proposed a technique for model-
ing Shellcode detection and attribution through
the instruction of sequence abstraction, which
extracts coarse-grained features from an instruc-
tion sequence. This technique uses Markov mod-
el for Shellcode detection and supports vector
machines for encoded Shellcode attribution [10].
The solution is based on static analysis and su-
pervises machine learning techniques, to extract
coarse-grained features used instead of byte pat-
terns. The evaluation shows that this solution can
detect all types of un-encoded Shellcodes from
their dataset and can attribute encoded Shellcodes
to their origin engine with high accuracy. Despite
the efforts that got our attention, they used a small
sample for training and all of these samples were
from only one engine that also uses all Shellcode
sections in the training because the model works
on known payloads and returns ranges. But it is
bypassed by adding low NOOP’s altogether with
unknown payloads in the Shellcode, so it can
spoof it and pass.
Gamayunov, D. et al. proposed Racewalk algo-
rithm which is a significant modification of the
Stride algorithm that had linear computational
complexity [11] [12]. It claims novelty of NOOP-
sled detection using IA-32 instruction frequency
analysis and SVM-based classification.
This approach reduces the false positive, and the
speed of operation is 1Gbps. The main idea in
this algorithm is the NOOP-zone which consists
of generally useless instructions that allow the
return address zone to be in the correct stack seg-
ment; because this varies from system to system,
so it detects the sled candidates and sends them to
SVM-based instruction frequency analyzer. Us-
ing only Four Shellcode engine generators, this
algorithm was applied.
Still, there are many defects like detecting
NOOPs of IA-64 and not being able to detect the
Shellcode construction methods that do not rely
on NOOP-sleds or using self-modified sleds that

are not supported and bypassed by spoofing clas-
sifiers in the same instruction set but with unusu-
al operands.
2.2.Dynamic Analysis:
Fen, Y. presented a method that uses randomiza-
tion based on data protection through protection
of pointers and arrays, because of buffer overflow
nature which depends on exceed writing on the
limited area and to populate the return address,
they use randomization on the arrays and pointers
in program space to protect buffers, point data,
and return address. This randomization is applied
on the source by using XOR encryption for all
the arrays and buffers. So, when the overflow
happens, the target will be an encryption value
which couldn’t be point to, then the attack would
fail. This approach is applied on the coding time
to protect your self-application from being used
in any type of buffer overflow attacks on the sys-
tems; but the major problem still exists; the appli-
cations from the shelf or on the operating system
itself [13].
Khodaverdi, J. et al. proposed robust run time
heuristic for detecting those Shellcodes which
are hard-coded addresses; taking into consider-
ation the fact that there are still too many users
using older versions of windows that are not pro-
tected by Address Space Layout Randomization
(ASLR) -enabled Windows. They used a custom
emulator which supports the execution of IA-
32 instructions, and they repeated the execution
multiple times starting from each location of the
input stream, to find all possible executable se-
quences of instructions in the input stream and
detect any hard corded addresses that point to the
stack pointer. Their evaluation results showed
low false positive on 10 million random binaries
[14].
They assumed using this emulator in a host level
to detect the attacks, and for better performance.
However, this approach could not detect return
oriented programming (ROP).
2.3.Quantitative Analysis:
Song, Y. et al. presented a quantitative analysis
of the strength and limitations of Shellcode poly-
morphism and described the impact of these tech-
niques in context of learning-based IDS systems.
They focused on two methods: Shellcode encryp-

S.J.I.T.N Vol .5 No.1 (2017)
4

tion-based and targeted blending attacks; because
these two types are used in wild attacks and are
successive in evade IDS sensors [15]. Their paper
demonstrates metrics to measure the effective-
ness of modern polymorphic engines and provide
insights into their designs. The paper dived in the
construction of many Shellcode types to under-
stand the overall issue, and after that analyzed
the polymorphic engines –six of them- and by
generating 10000 unique samples they plotted
visualization images for each engine outputs to
extract the pattern they used in creating the op
codes. Also, they combined two engines that
use polymorphism and blended them into one
engine that they called A Hybrid Engine. They
simply used CLET to cipher the Shellcode, then
hid CLET’s decoder with ADMmutate and used
ADMmutate’s advanced NOP sled generator and
showed how the attackers can blend between
many engines to generate new patterns. After
that present newed a design to detect the modern
obfuscation techniques. This paper allows us to
go throw the inside of designing the polymorphic
Shellcode engines.
2.4.Hybrid Analysis:
Yuan, J. et al. proposed a method that uses static
analysis (source code analysis) with the dynamic
test (test a program while it is running), so this
approach strikes a proper balance between static
and dynamic analysis to identify buffer overflow
vulnerabilities in a binary code (IA-32) without a
source code [16].
They used two steps in their approach, first found
some potential weakness locations then tested
every potential weakness locations to reduce the
false positive. After disassembly programs they
went through many steps including identifying
function call relations, analysing stack space, an-
alyzing parameters, the use of local buffer, and fi-
nally determining the overflow function by using
BugScam that can detect functions utilized in the
binary file like Strcpy and so on.
And on the dynamic use Ollydbg to populate
these functions that were identified before in
static to see if it would check bounders or their
overflow. Testing results shows low false alarm.
We see that this approach can handle the stack
overflow, and heap overflow can be a successful

and needs us to put all the binaries of the organi-
zations to this analysis to allow it to know if there
is the ability to buffer overflow and this is not
easily achieved!
The proposed solution is different than those solu-
tions by depending on special feature extraction
to make the classifier algorithm know the pattern
of the polymorphic NOP generated.
3.Methodology

Figure 2 The Proposed Solution
The proposed solution depends on data mining
classification techniques. It identifies malicious
packets transferred in the network by using the
first part from the three parts of Shellcode, which
is known as NOP sled and specifically the poly-
morphic NOPs. This type of NOPs is applied as
an advance fully undetectable attack.
Figure 2 shows the steps of the solution that are
followed to achieve the target. Firstly, defining
the polymorphic engines. Metasploit Shellcode
engines (SINGLE-BYTE and OPTY2) are cho-
sen and which have architecture IA-32. Then
implementing a script that applies automatic
generation on the engines with all possible pa-
rameters. This step produces significant amount
of polymorphic Shellcodes that are generated and

S.J.I.T.N Vol .5 No.1 (2017)
5

labeled as malicious.
These Shellcode are CPU instructions in hexa-
decimal format, which do nothing other than
forwarding the execution of payloads to the next
instructions. In the same time, we collect massive
files with different types of data to be the clean
data and convert them to HEX.
After that moving to the next preparation by us-
ing Capstone Engine to disassemble all the hexa-
decimals of the two labels. This disassembly will
convert the HEX to sequence of CPU instructions
(assembly).
The last step here in building the dataset is to ex-
tract the features that aree used in the classifica-
tion algorithms.
So, just extracting the operation code of all as-
sembly instructions for the two labels. This leads
to having a dataset that looks like Figure 3. Each
line represent a file with its label.

Figure 3 Four Samples of Dataset
By going forward, all these features are ordered
without repetition as shown in Figure 4. This se-
quence is the header of the classification input
matrix, listing the instructions like this without
respect to the order and the length of the input;
because real environments systems couldn’t de-
termine the length of Shellcode or from where
it’s starting.

Figure 4 Feature names header
Then dataset refined to be suitable to the classifi-
cation method by converting its records to Bool-
ean matrix which is produced from Formula 1.

Formula 1 Record to Boolean Value Conversion
Representing dataset example to the Boolean by
using Formula 1. Producing Boolean matrix as
shown in Figure 5.

The matrix in Figure 5 consist of rows that are
equal to the dataset files count that appear in Fig-
ure 3 and the columns is the number of the fea-
tures in Figure 4. So by checking the availability
of each feature in the record, we can identify the
matrix element is 0 or 1.

Figure 5 Matrix of Boolean Weighing of Four Exam-
ple Records
The last step in the solution is to pass this ma-
trix to the classification algorithm. Classification
methods are used such as SVM, Decision Tree,
and Bernoulli NB to find which of them is the
most method that suites the target of efficient ma-
licious packets detection.
Representing how Decision Tree model will be
applied on the four records of Boolean matrix
shown in Figure 6.
This figure shows that the algorithm took a sec-
ond feature as a root because if the record that has
(adc) instruction, it will be clean and malicious if
not available.

Figure 6 Output Representation of Decision Tree Ap-
plying on the four Samples.
The 4 records model is a small example that can
be larger according to how large the dataset is. In
Figure 7 the representation of a Decision Tree is
applied on twenty-eight samples’ matrix as an-
other example.

S.J.I.T.N Vol .5 No.1 (2017)
6

Figure 7 Decision Tree Model for Twenty eight Sam-
ples
4.Experimentation
4.1.Corpus:
The corpus contains 500,000 malicious files and
72,000 clean files. Malicious corpus is generated
from Metasploit polymorphic NOP’s engine for
1 byte and multi bytes (OPTY2) with a max of
5000 bytes. Also collected clean files from vari-
ous types.
4.2.Setup Tools:
Installed python 2.7 on 2.5 GHZ core I7 machine
with 10Gb RAM. Using script tools available in
python, we installed NLTK by this command (pip
install nltk). After that installed scikit-learn tool
by applying the command (pip install -U scikit-
learn).
4.3.Preprocessing:
We collected malicious files as well as clean files
which have the hexadecimal representation con-
verted to assembly lines using Capstone Engine
[17], then got the operation code of each line as
it’s the selected feature that we need to apply the
experiments on it.
 Malicious dataset has large number of files com-
pared to the clean data so dataset shuffled and
chose 70,000 records randomly.
Processing:
Script implemented to use the algorithms API of
SKLEARN Library to process this dataset with
respect to training the algorithm and testing it and
calculating the accuracy, precision, and recall to
evaluate each algorithm performance and deter-

mine its effectiveness. Precision is the percent-
age of predicted documents class that is correct-
ly classified. Recall is the percentage of the total
documents for the given class that are correctly
classified. Also, computed the F-measure a com-
bined metric that takes both precision and recall
into consideration [18].
5.Experimentation Results
This section presents the results of three experi-
ments using the three different algorithms which
are: SVM, BNB, and DT. Algorithms training ap-
plied on 70% of the two labeled and used the rest
(30%) of the dataset to measure the performance
and efficiency of each algorithm.
Table 1 illustrates the performance measurement
results of each algorithm according to the preci-
sion (TP/TP+FP), recall (TP/TP+FN), and F-mea-
sure (2*precision*recall / precision + recall) met-
rics. From this, results found that SVM has the
highest rate 99.3% of correctly malicious predic-
tion from all of real malicious and this computed
from recall. Beside that, they found that SVM had
9.5% of false alarm.
The Accuracy (TP+TN/TP+TN+FN+FN) met-
rics are computed and listed in Table 2. It shows
clearly that SVM has the highest accuracy with
94.91%.
Table 1 Precision, Recall, and F-measure of algo-
rithms.

Precision Recall F-measure

Pos Neg Pos Neg Pos Neg

BNB 90.9% 96.78% 97% 90.33% 93.87% 93.44%

SVM 91.27% 99.26% 99.3% 90.5% 95.13% 94.68%

DT 91.93% 94.82% 95% 91.66% 93.44% 93.22%

Table 2 Accuracy and Execution Time
	

accuracy Execution Time

Training Testing

BNB 93.66% 2.7039 sec 1.671 sec

SVM 94.91% 3.968 sec 1.734 sec

DT 93.33% 3.233 sec 1.405 sec

6.Conclusion
We demonstrated how dangerous the buffer over-
flow is, and how hackers can be employing the
weapons of polymorphic Shellcodes to hack the
systems and bypass security that can catch Shell-
codes.
Data mining classification is used in this solution.

S.J.I.T.N Vol .5 No.1 (2017)
7

This solution depends on the idea of getting the
op-code of the CPU Intel architecture instruction
sets for the polymorphic sled NOOPs of 32-bit
and applying the classification on it. Our solu-
tion depends on a self-generated dataset from
Metasploit polymorphic NOOPs engines. Apply-
ing different classification algorithms on the data-
set to get the perfect method that can deal with
the problem.
Solution experiments illustrated high accuracy in
detecting malicious data on the network with low
false alarm for most of the algorithms we used.
SVM was chosen as the best classification algo-
rithm that can handle this issue because of it’s
94% accuracy and getting 99.33% of recall met-
rics and the low false alarm we get.
Our solution shows significant results comparing
against signature based on SNORT IDS which
we compared against 1000 packets of polymor-
phic Shellcodes and the IDS classified 50.2%
packets as harmful packet. On the other hand,
our solution detects most of these packets with a
close rate of 94%.
References
[1] National Institute Of Standards and Technolo-
gy, “https://nvd.nist.gov/home.cfm,” 2016. [On-
line].
[2] Y. Younan, “25 Years of Vulnerabilityies:
1988- 2012,” Sourcefire Vulnerability Research
Team (VRTTM), 2013.
[3] “Buffer Overflow In Wikipedia,” [Online].
Available: https://en.wikipedia.org/wiki/Buffer_
overflow. [Accessed March 2016].
[4] Spafford, E. H. (1989). The Internet worm
program: An analysis. ACM SIGCOMM Com-
puter Communication Review, 19(1), 17-57.
[5] “SNORT,” 2016. [Online]. Available: www.
snort.org. [Accessed 2016].
[6]. “www.metasploit.org,” [Online].
[7] Y. Gushin, “http://www.ecl-labs.org/papers/
ecl-poly.txt,” 2008. [Online].
[8] K2, “http://www.ktwo.ca/security.html,”
[Online].
[9] CLETteam, “Polymorphic Shellcode Engine
Using Spectrum Analysis.,” Phrack Magazine,
2003.

[10] Zhao, Z., & Ahn, G. J. (2013, October). Us-
ing instruction sequence abstraction for shellcode
detection and attribution. In Communications and
Network Security (CNS), 2013 IEEE Conference
on (pp. 323-331). IEEE.
[11] Gamayunov, D., Quan, N. T. M., Sakharov,
F., & Toroshchin, E. (2009, November). Race-
walk: fast instruction frequency analysis and
classification for shellcode detection in network
flow. In Computer Network Defense (EC2ND),
2009 European Conference on (pp. 4-12). IEEE.
[12] Akritidis, P., Markatos, E., Polychronakis,
M., & Anagnostakis, K. (2005). Stride: Polymor-
phic sled detection through instruction sequence
analysis. Security and Privacy in the Age of
Ubiquitous Computing, 375-391.
[13] Fen, Y., Fuchao, Y., Xiaobing, S., Xinchun,
Y., & Bing, M. (2012). A new data randomization
method to defend buffer overflow attacks. Phys-
ics Procedia, 24, 1757-1764.
[14] Khodaverdi, J., & Amin, F. (2013). A Ro-
bust Behavior Modeling for Detecting Hard-cod-
ed Address Contained Shellcodes. International
Journal of Security & Its Applicetions, 7(5).
[15] Song, Y., Locasto, M. E., Stavrou, A., Kero-
mytis, A. D., & Stolfo, S. J. (2010). On the in-
feasibility of modeling polymorphic shellcode.
Machine learning, 81(2), 179-205.
[16] Yuan, J., & Ding, S. (2011, May). A meth-
od for detecting buffer overflow vulnerabili-
ties. In Communication Software and Networks
(ICCSN), 2011 IEEE 3rd International Confer-
ence on (pp. 188-192). IEEE.
[17] Capstone, “Capstone The Ultimate Dis-
assembler,” August 2010. [Online]. Available:
http://www.capstone-engine.org. [Accessed 28
April 2016].
[18] Makhoul, J., Kubala, F., Schwartz, R., &
Weischedel, R. (1999, February). Performance
measures for information extraction. In Proceed-
ings of DARPA broadcast news workshop (pp.
249-252).

