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 Shellcode acts as a weapon to perform Buffer Overflow (BOF), which is 

ranked as the most dangerous vulnerability. It consists of three sections that 

always transform their parts to be a Polymorphic Shellcode. Solutions avail-

able from Intrusion Detection Systems (IDS) still depend on the signature. 

Also, solutions that use data mining depend on Shellcodes with the factor of 

including payloads and not getting the high results, so polymorphic and un-

known Shellcodes could not be detected. We proposed a new solution using 

a data mining classification technique on special features extracted which de-

pends on the operation code of no operation instructions; which can classify 

the packets on the transport layer of the network as clean or buffer overflow 

Shellcode attack. This solution can detect unseen Shellcodes. 

A dataset generated for malicious packets consists of 500,000 files from 

Metasploit No-Operation engines and 72,000 files of a clean dataset from 

various types of data. By applying different classification methods on the 

dataset which include selected features we specified and evaluating them by 

evaluation metrics; it showed that the solution has achieved high accuracy 

results with a 94% rate. In contrast, signature based on SNORT IDS detects 

only 50.02% of polymorphic Shellcodes in the experiment that was generated 

to compare the proposed solution with real IDS system. SVM algorithm was 

selected because of the recall rate 99.33% in detecting polymorphic NOOP’s 

with low false alarm.
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1.Introduction
Information Technology infrastructure suffering 
from various vulnerabilities threats especially ze-
ro-day (0day) vulnerabilities which is the main 
reason in destroying systems, leaks information, 
and causes financial destruction. Buffer overflow 
is the most famous type of vulnerability which 
can hijack systems, execute remote applications, 
and spreading worms. Figure 1 shows that buffer 
overflow appears in a high severity and dangerous 
vulnerability that is used in cyber-attacks [1] [2]. 
This type of attacks forced security companies 
and security researchers to find optimal solutions 
that can protect complete solution that can protect 
and avoid systems from being hacked by buffer 
overflow.

Figure 1 Top Vulnerability types with a high severity 
[2]
Buffer overflow is caused by bad programming 
practices used from programmers through work-
ing with memories without any boundary check, 
so while writing data to a buffer, it overruns the 
buffer’s boundary and overwrites adjacent mem-
ory locations [3].
According to this issue, researchers started put-
ting solutions by advising, using alternative pro-
gramming languages that have built-in protection 
against accessing or overwriting  data in any part of 
a memory. As C and C++ provide ability to  work 
with the memory without checking the boundaries 
of buffers in writing, beside that, advise to stop us-
ing standard library functions and uses safe librar-
ies that check boundaries [4], Microsoft provided 
application programming interface (API) rou-
tine to use Point Guard, implemented executable 
space protection in the core of operating systems, 
created data execution prevention (DEP), invent-
ed address space layout randomization (ASLR), 
Return Oriented Programming (ROP) prevent 

etc…. Inspite of these efforts, hackers always find 
ways, holes, and new techniques to skip these 
prevention techniques. To date, network intrusion 
detection systems detect and prevent such attacks 
by identifying worms and Shellcodes through us-
ing a fixed byte sequence of signature which is 
stored in updatable database of previously known 
worm’s payload [5]. Concluding that there is no 
one solution for this threat, instead, we need doz-
ens of solutions through which every solution 
solves one face from buffer overflow faces, so 
researchers use static analysis by analyzing the 
source code and dynamic analysis that analyses 
the applications on runtime. A point of view that 
handles this problem from another perspective by 
not working on the system itself but working on 
the network level and identify the packets trans-
ferred in the network that cause buffer overflow 
attacks. In this area there are lots of researches that 
detect and prevent the payloads on the network; 
but as usual there are techniques used by hack-
ers to evade these approaches. Nowadays, there 
lots of engines that produce encrypted Shellcodes 
like those in Metasploit Framework [6], ecl-poly 
[7], AdMutate [8], or CLET [9]. By digging down 
into the structure of a Shellcode, there are main 
sections that must be in the Shellcode to make the 
overflow successful, which consist of NOP sled, 
payload, and return sled. Our work takes NOP 
sled section to identify the Shellcode while being 
transferred in the network, NOP section can con-
sist of a huge probability of useless instructions 
which are generated and obfuscated by Shellcode 
engines. 
In this Paper, Bernoulli Naïve Bayes, Decision 
Tree, and SVM data mining algorithms are used 
to be trained on special selected features that are-
extracted from very large amounts of polymor-
phic NOPs in Shellcodes. This allows the classifi-
er to know the patterns which identify this section 
of a Shellcode. Therefore, the proposed solution 
can alarm that the system under buffer overflow is 
being attacked.
The rest of this paper is organized as follows: sec-
tion two; related work, section three; methodol-
ogy, section four; experimentation, section five; 
the results of experimentation and section six con-
cludes the paper.
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2.Related Work
Overflow detection and prevention problems 
have been studied since the mid-nineties. How-
ever, many recent researches have been published 
to solve this hot problem. 
2.1.Static Analysis:
Zhao, Z. et al. proposed a technique for model-
ing Shellcode detection and attribution through 
the instruction of sequence abstraction, which 
extracts coarse-grained features from an instruc-
tion sequence. This technique uses Markov mod-
el for Shellcode detection and supports vector 
machines for encoded Shellcode attribution [10].  
The solution is based on static analysis and su-
pervises machine learning techniques, to extract 
coarse-grained features used instead of byte pat-
terns. The evaluation shows that this solution can 
detect all types of un-encoded Shellcodes from 
their dataset and can attribute encoded Shellcodes 
to their origin engine with high accuracy. Despite 
the efforts that got our attention, they used a small 
sample for training and all of these samples were 
from only one engine that  also uses all Shellcode 
sections in the training because the model works 
on known payloads and returns ranges. But it is 
bypassed by adding low NOOP’s altogether with 
unknown payloads in the Shellcode, so it can 
spoof it and pass.
Gamayunov, D. et al. proposed Racewalk algo-
rithm which is a significant modification of the 
Stride algorithm that had linear computational 
complexity [11] [12]. It claims novelty of NOOP-
sled detection using IA-32 instruction frequency 
analysis and SVM-based classification. 
This approach reduces the false positive, and the 
speed of operation is 1Gbps. The main idea in 
this algorithm is the NOOP-zone which consists 
of generally useless instructions that allow the 
return address zone to be in the correct stack seg-
ment; because this varies from system to system, 
so it detects the sled candidates and sends them to 
SVM-based instruction frequency analyzer. Us-
ing only Four Shellcode engine generators, this 
algorithm was applied. 
Still, there are many defects like detecting 
NOOPs of IA-64 and not being able to detect the 
Shellcode construction methods that do not rely 
on NOOP-sleds or using self-modified sleds that 

are not supported and bypassed by spoofing clas-
sifiers in the same instruction set but with unusu-
al operands.
2.2.Dynamic Analysis:
Fen, Y. presented a method that uses randomiza-
tion based on data protection through protection 
of pointers and arrays, because of buffer overflow 
nature which depends on exceed writing on the 
limited area and to populate the return address, 
they use randomization on the arrays and pointers 
in program space to protect buffers, point data, 
and return address. This randomization is applied 
on the source by using XOR encryption for all 
the arrays and buffers. So, when the overflow 
happens, the target will be an encryption value 
which couldn’t be point to, then the attack would 
fail. This approach is applied on the coding time 
to protect your self-application from being used 
in any type of buffer overflow attacks on the sys-
tems; but the major problem still exists; the appli-
cations from the shelf or on the operating system 
itself [13].
Khodaverdi, J. et al. proposed robust run time 
heuristic for detecting those Shellcodes which 
are hard-coded addresses; taking into consider-
ation the fact that there are still too many users 
using older versions of windows that are not pro-
tected by Address Space Layout Randomization 
(ASLR) -enabled Windows. They used a custom 
emulator which supports the execution of IA-
32 instructions, and they repeated the execution 
multiple times starting from each location of the 
input stream, to find all possible executable se-
quences of instructions in the input stream and 
detect any hard corded addresses that point to the 
stack pointer. Their evaluation results showed 
low false positive on 10 million random binaries 
[14]. 
They assumed using this emulator in a host level 
to detect the attacks, and for better performance. 
However, this approach could not detect return 
oriented programming (ROP).
2.3.Quantitative Analysis:
Song, Y. et al. presented a quantitative analysis 
of the strength and limitations of Shellcode poly-
morphism and described the impact of these tech-
niques in context of learning-based IDS systems. 
They focused on two methods: Shellcode encryp-
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tion-based and targeted blending attacks; because 
these two types are used in wild attacks and are 
successive in evade IDS sensors [15]. Their paper 
demonstrates metrics to measure the effective-
ness of modern polymorphic engines and provide 
insights into their designs. The paper dived in the 
construction of many Shellcode types to under-
stand the overall issue, and  after that analyzed 
the  polymorphic engines –six of them- and by 
generating 10000 unique samples they plotted 
visualization images for each  engine outputs to  
extract the pattern they  used in creating the op 
codes.  Also, they combined two  engines that 
use  polymorphism  and  blended them  into one 
engine that they called A Hybrid Engine. They  
simply used CLET to cipher the Shellcode, then 
hid CLET’s decoder with ADMmutate and  used 
ADMmutate’s advanced NOP sled generator and 
showed how the attackers can blend between 
many engines to  generate new patterns. After 
that present newed a design to detect the modern 
obfuscation techniques. This paper allows us to 
go throw the inside of designing the polymorphic 
Shellcode engines.
2.4.Hybrid Analysis:
Yuan, J. et al. proposed a method that uses static 
analysis (source code analysis) with the dynamic 
test (test a program while it is running), so this 
approach strikes a proper balance between static 
and dynamic analysis to identify buffer overflow 
vulnerabilities in a binary code (IA-32) without a 
source code [16].
They used two steps in their approach, first found 
some potential weakness locations then tested 
every potential weakness locations to reduce the 
false positive. After disassembly programs they 
went through many steps including identifying 
function call relations, analysing stack space, an-
alyzing parameters, the use of local buffer, and fi-
nally determining the overflow function by using 
BugScam that can detect functions utilized in the 
binary file like Strcpy and so on. 
And on the dynamic use Ollydbg to populate 
these functions that were identified before in 
static to see if it would check bounders or their 
overflow. Testing results shows low false alarm. 
We see that this approach can handle the stack 
overflow, and heap overflow can be a successful 

and needs  us to put all the binaries of the organi-
zations to this analysis to allow it to know if there 
is the ability to buffer overflow and this is not 
easily achieved!
The proposed solution is different than those solu-
tions by depending on special feature extraction 
to make the classifier algorithm know the pattern 
of the polymorphic NOP generated.
3.Methodology

Figure 2 The Proposed Solution
The proposed solution depends on data mining 
classification techniques. It identifies malicious 
packets transferred in the network by using the 
first part from the three parts of Shellcode, which 
is known as NOP sled and specifically the poly-
morphic NOPs. This type of NOPs is applied as 
an advance fully undetectable attack.
Figure 2 shows the steps of the solution that are 
followed to achieve the target. Firstly, defining 
the polymorphic engines. Metasploit Shellcode 
engines (SINGLE-BYTE and OPTY2) are cho-
sen and which have architecture IA-32. Then 
implementing a script that applies automatic 
generation on the engines with all possible pa-
rameters. This step produces significant amount 
of polymorphic Shellcodes that are generated and 
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labeled as malicious. 
These Shellcode are CPU instructions in hexa-
decimal format, which do nothing other than 
forwarding the execution of payloads to the next 
instructions. In the same time, we collect massive 
files with different types of data to be the clean 
data and convert them to HEX.
After that moving to the next preparation by us-
ing Capstone Engine to disassemble all the hexa-
decimals of the two labels. This disassembly will 
convert the HEX to sequence of CPU instructions 
(assembly).
The last step here in building the dataset is to ex-
tract the features that aree used in the classifica-
tion algorithms. 
So, just extracting the operation code of all as-
sembly instructions for the two labels. This leads 
to having a dataset that looks like Figure 3. Each 
line represent a file with its label.

Figure 3 Four Samples of Dataset
By going forward, all these features are ordered 
without repetition as shown in Figure 4. This se-
quence is the header of the classification input 
matrix, listing the instructions like this without 
respect to the order and the length of the input; 
because  real environments systems couldn’t de-
termine the length of Shellcode or from where 
it’s starting.

Figure 4 Feature names header
Then dataset refined to be suitable to the classifi-
cation method by converting its records to Bool-
ean matrix which is produced from Formula 1.

Formula 1 Record to Boolean Value Conversion
Representing dataset example to the Boolean by 
using Formula 1. Producing Boolean matrix as 
shown in Figure 5. 

The matrix in Figure 5 consist of rows that are 
equal to the dataset files count that appear in Fig-
ure 3 and the columns is the number of the fea-
tures in Figure 4. So by checking  the availability 
of each feature in the record, we can identify the 
matrix element is 0 or 1.

Figure 5 Matrix of Boolean Weighing of Four Exam-
ple Records
The last step in the solution is to pass this ma-
trix to the classification algorithm. Classification 
methods are used such as SVM, Decision Tree, 
and Bernoulli NB to find which of them is the 
most method that suites the target of efficient ma-
licious packets detection.
Representing how Decision Tree model will be 
applied on the four records of Boolean matrix 
shown in Figure 6. 
This figure shows that the algorithm took a sec-
ond feature as a root because if the record that has 
(adc) instruction, it will be clean and malicious if 
not available.

Figure 6 Output Representation of Decision Tree Ap-
plying on the four Samples.
The 4 records model is a small example that can 
be larger according to how large the dataset is. In 
Figure 7 the representation of a Decision Tree is 
applied on twenty-eight samples’ matrix as an-
other example.
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Figure 7 Decision Tree Model for Twenty eight Sam-
ples
4.Experimentation
4.1.Corpus:
The corpus contains 500,000 malicious files and 
72,000 clean files. Malicious corpus is generated 
from Metasploit polymorphic NOP’s engine for 
1 byte and multi bytes (OPTY2) with a max of 
5000 bytes. Also collected clean files from vari-
ous types.
4.2.Setup Tools:
Installed python 2.7 on 2.5 GHZ core I7 machine 
with 10Gb RAM. Using script tools available in 
python, we installed NLTK by this command (pip 
install nltk). After that installed scikit-learn tool 
by applying the command (pip install -U scikit-
learn).
4.3.Preprocessing:
We collected malicious files as well as clean files 
which have the hexadecimal representation con-
verted to assembly lines using Capstone Engine 
[17], then got the operation code of each line as 
it’s the selected feature that we need to apply the 
experiments on it.
 Malicious dataset has large number of files com-
pared to the clean data so dataset shuffled and 
chose 70,000 records randomly.
Processing:
Script implemented to use the algorithms API of 
SKLEARN Library to process this dataset with 
respect to training the algorithm and testing it and 
calculating the accuracy, precision, and recall to 
evaluate each algorithm performance and deter-

mine its effectiveness. Precision is the percent-
age of predicted documents class that is correct-
ly classified. Recall is the percentage of the total 
documents for the given class that are correctly 
classified. Also, computed the F-measure a com-
bined metric that takes both precision and recall 
into consideration [18].
5.Experimentation Results
This section presents the results of three experi-
ments using the three different algorithms which 
are: SVM, BNB, and DT. Algorithms training ap-
plied on 70% of the two labeled and used the rest 
(30%) of the dataset to measure the performance 
and efficiency of each algorithm.
Table 1 illustrates the performance measurement 
results of each algorithm according to the preci-
sion (TP/TP+FP), recall (TP/TP+FN), and F-mea-
sure (2*precision*recall / precision + recall) met-
rics. From this, results found that SVM has the 
highest rate 99.3% of correctly malicious predic-
tion from all of real malicious and this computed 
from recall. Beside that, they found that SVM had 
9.5% of false alarm.
The Accuracy (TP+TN/TP+TN+FN+FN) met-
rics are computed and listed in Table 2. It shows 
clearly that SVM has the highest accuracy  with 
94.91%.
Table 1 Precision, Recall, and F-measure of algo-
rithms.

Precision Recall F-measure

Pos Neg Pos Neg Pos Neg

BNB 90.9% 96.78% 97% 90.33% 93.87% 93.44%

SVM 91.27% 99.26% 99.3% 90.5% 95.13% 94.68%

DT 91.93% 94.82% 95% 91.66% 93.44% 93.22%

Table 2 Accuracy and Execution Time
	

accuracy Execution Time

Training Testing

BNB 93.66% 2.7039 sec 1.671 sec

SVM 94.91% 3.968 sec 1.734 sec

DT 93.33% 3.233 sec 1.405 sec

6.Conclusion
We demonstrated how dangerous the buffer over-
flow is,  and how hackers can be employing the 
weapons of polymorphic Shellcodes to hack the 
systems and bypass security that can catch Shell-
codes. 
Data mining classification is used in this solution. 
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This solution depends on the idea of getting the 
op-code of the CPU Intel architecture instruction 
sets for the polymorphic sled NOOPs of 32-bit 
and applying the classification on it. Our solu-
tion depends on a self-generated dataset from 
Metasploit polymorphic NOOPs engines. Apply-
ing different classification algorithms on the data-
set to get the perfect method that can deal with 
the problem. 
Solution experiments illustrated high accuracy in 
detecting malicious data on the network with low 
false alarm for most of the algorithms we used. 
SVM was chosen as the best classification algo-
rithm that can handle this issue because of it’s 
94% accuracy and getting 99.33% of recall met-
rics and the low false alarm we get.
Our solution shows significant results comparing 
against signature based on SNORT IDS which 
we compared against 1000 packets of polymor-
phic Shellcodes and the IDS classified 50.2% 
packets as  harmful packet. On the other hand, 
our solution detects most of these packets with a 
close rate of 94%.
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