
S.J.I.T.N Vol .2 (2014) 30

Available at: www.sabauni.net
Journal home page: www.sjitn.sabauni.net

Designing Algorithm For Resources Management
Between Processes In Cluster Networks
Dr. Al-Khulaidi Abdualmajed Ahmed*

Saba University, Sana’a Republic of Yemen

Article info ABSTRACT

Article history :
Accepted : 2013

Keywords:
Clustering
Task scheduler
Resource manager

The paper is concerned with the problem of optimizing the
distribution of tasks executed in the cluster. To solve this problem,
algorithm has been developed to perform management tasks.
Verification of the proposed algorithms has been implemented for
solving the transportation problem on a cluster network. The data
obtained allow us to judge the effectiveness of implemented
algorithms.

* Corresponding author: Dr. Abdualmajed A. Al-Khulaidi.
E-mail address: a.alkhulidi@sabauni.net
© 2014 Saba Journal of Information Technology and Networking,
Published by Saba University. All Rights Reserved.

S.J.I.T.N Vol .2 (2014) 30

Available at: www.sabauni.net
Journal home page: www.sjitn.sabauni.net

Designing Algorithm For Resources Management
Between Processes In Cluster Networks
Dr. Al-Khulaidi Abdualmajed Ahmed*

Saba University, Sana’a Republic of Yemen

Article info ABSTRACT

Article history :
Accepted : 2013

Keywords:
Clustering
Task scheduler
Resource manager

The paper is concerned with the problem of optimizing the
distribution of tasks executed in the cluster. To solve this problem,
algorithm has been developed to perform management tasks.
Verification of the proposed algorithms has been implemented for
solving the transportation problem on a cluster network. The data
obtained allow us to judge the effectiveness of implemented
algorithms.

* Corresponding author: Dr. Abdualmajed A. Al-Khulaidi.
E-mail address: a.alkhulidi@sabauni.net
© 2014 Saba Journal of Information Technology and Networking,
Published by Saba University. All Rights Reserved.

S.J.I.T.N Vol .2 (2014) 30

Available at: www.sabauni.net
Journal home page: www.sjitn.sabauni.net

Designing Algorithm For Resources Management
Between Processes In Cluster Networks
Dr. Al-Khulaidi Abdualmajed Ahmed*

Saba University, Sana’a Republic of Yemen

Article info ABSTRACT

Article history :
Accepted : 2013

Keywords:
Clustering
Task scheduler
Resource manager

The paper is concerned with the problem of optimizing the
distribution of tasks executed in the cluster. To solve this problem,
algorithm has been developed to perform management tasks.
Verification of the proposed algorithms has been implemented for
solving the transportation problem on a cluster network. The data
obtained allow us to judge the effectiveness of implemented
algorithms.

* Corresponding author: Dr. Abdualmajed A. Al-Khulaidi.
E-mail address: a.alkhulidi@sabauni.net
© 2014 Saba Journal of Information Technology and Networking,
Published by Saba University. All Rights Reserved.

S.J.I.T.N Vol .2 (2014) 31

Introduction

In recent years, both abroad and our country have
been working actively in association with the use of
parallel processing technology. With the use of
parallel processing technology, it may significantly
increase the performance speed. Because
supercomputers are expensive, only large
companies and institutions can have such
computing power [1,2,3]. The solution to this
problem is the clustering of complete processing
units together, therefore it is possible to create a
system that make computing power comparable to
a supercomputer and cost much less.

Algorithm Of Resource Management Between
Processes

The job is an abstract entity consisting of a set of
commands and options. The task presented to the
user in the form of a script contains the resource
requirements, job attributes and a set of commands
to be executed. Once a script task is created, it can
be used as many times as necessary and possible
modification of it. The Job must be first put in the
scheduler queue, then out of the queue. It will be
passed to a node for execution. The job can be
conventional (regular) and interactive. The usual
task is queued and then we wait for its execution,
the result will be recorded in a user-specified
location. Interactive definition differs in the input
and output streams that are redirected accordingly
on the screen and keyboard respectively, Tasks of
teams are entered from the keyboard itself. Each job
may require running a lot of different resources
such as processors, memory, time (and the usual
CPU). You may also need storage space. With the
help of a resource manager, we can set a limit for
each resource. If the limit is not set for any
resource, it is assumed to be infinity algorithm:
1. Algorithm is determined by the type of resources
used by this task and the number and priority of the
task.

2. Assignments are distributed by stages and
arranged in order of priority.
3. Management Service are then sent to an
executable script. Binding to an existing reservation
is made by ASL, the reservation of resources at this
point should already be done. Resources can be of
the following species: the number of processors,
memory, required software, virtual memory, time
and so on…
Resource management in computing systems deals
with the allocation of available system resources
to the various tasks ready to be executed. This is a
process that significantly affects the overall
performance of the system. Typically, resource
allocation algorithms take as input a list of tasks or
processes that are ready to be executed at some
particular time as provided by a system scheduler.
The scheduler considers a task flow graph in
order to resolve task dependencies.
Traditionally, resource allocation in multiprocessor
systems concentrates on the allocation of software
tasks to each of the processor nodes (usually
individual processors with local and memory),
such that the overall performance of the system
is maximized. This is a well-known problem
with a large amount of research contributions
towards efficient utilization of the massive
hardware parallelism available in such systems
using various exact and heuristic approaches. In a
case of many core systems, important on-chip
constraints such as limited buffer capacity for on-
chip communication, on-chip network congestion,
power density, and limited must be used.
In an effort to integrate the emerging challenges,
I/O bandwidth necessitate the evolution of
existing algorithms or even the development of
new algorithms, In such dense systems, efficient
workload distribution could benefit from real-
time system information knowledge such as the
status/utilization of each core and, additionally,
the status of the interconnection network.

S.J.I.T.N Vol .2 (2014) 31

Introduction

In recent years, both abroad and our country have
been working actively in association with the use of
parallel processing technology. With the use of
parallel processing technology, it may significantly
increase the performance speed. Because
supercomputers are expensive, only large
companies and institutions can have such
computing power [1,2,3]. The solution to this
problem is the clustering of complete processing
units together, therefore it is possible to create a
system that make computing power comparable to
a supercomputer and cost much less.

Algorithm Of Resource Management Between
Processes

The job is an abstract entity consisting of a set of
commands and options. The task presented to the
user in the form of a script contains the resource
requirements, job attributes and a set of commands
to be executed. Once a script task is created, it can
be used as many times as necessary and possible
modification of it. The Job must be first put in the
scheduler queue, then out of the queue. It will be
passed to a node for execution. The job can be
conventional (regular) and interactive. The usual
task is queued and then we wait for its execution,
the result will be recorded in a user-specified
location. Interactive definition differs in the input
and output streams that are redirected accordingly
on the screen and keyboard respectively, Tasks of
teams are entered from the keyboard itself. Each job
may require running a lot of different resources
such as processors, memory, time (and the usual
CPU). You may also need storage space. With the
help of a resource manager, we can set a limit for
each resource. If the limit is not set for any
resource, it is assumed to be infinity algorithm:
1. Algorithm is determined by the type of resources
used by this task and the number and priority of the
task.

2. Assignments are distributed by stages and
arranged in order of priority.
3. Management Service are then sent to an
executable script. Binding to an existing reservation
is made by ASL, the reservation of resources at this
point should already be done. Resources can be of
the following species: the number of processors,
memory, required software, virtual memory, time
and so on…
Resource management in computing systems deals
with the allocation of available system resources
to the various tasks ready to be executed. This is a
process that significantly affects the overall
performance of the system. Typically, resource
allocation algorithms take as input a list of tasks or
processes that are ready to be executed at some
particular time as provided by a system scheduler.
The scheduler considers a task flow graph in
order to resolve task dependencies.
Traditionally, resource allocation in multiprocessor
systems concentrates on the allocation of software
tasks to each of the processor nodes (usually
individual processors with local and memory),
such that the overall performance of the system
is maximized. This is a well-known problem
with a large amount of research contributions
towards efficient utilization of the massive
hardware parallelism available in such systems
using various exact and heuristic approaches. In a
case of many core systems, important on-chip
constraints such as limited buffer capacity for on-
chip communication, on-chip network congestion,
power density, and limited must be used.
In an effort to integrate the emerging challenges,
I/O bandwidth necessitate the evolution of
existing algorithms or even the development of
new algorithms, In such dense systems, efficient
workload distribution could benefit from real-
time system information knowledge such as the
status/utilization of each core and, additionally,
the status of the interconnection network.

S.J.I.T.N Vol .2 (2014) 31

Introduction

In recent years, both abroad and our country have
been working actively in association with the use of
parallel processing technology. With the use of
parallel processing technology, it may significantly
increase the performance speed. Because
supercomputers are expensive, only large
companies and institutions can have such
computing power [1,2,3]. The solution to this
problem is the clustering of complete processing
units together, therefore it is possible to create a
system that make computing power comparable to
a supercomputer and cost much less.

Algorithm Of Resource Management Between
Processes

The job is an abstract entity consisting of a set of
commands and options. The task presented to the
user in the form of a script contains the resource
requirements, job attributes and a set of commands
to be executed. Once a script task is created, it can
be used as many times as necessary and possible
modification of it. The Job must be first put in the
scheduler queue, then out of the queue. It will be
passed to a node for execution. The job can be
conventional (regular) and interactive. The usual
task is queued and then we wait for its execution,
the result will be recorded in a user-specified
location. Interactive definition differs in the input
and output streams that are redirected accordingly
on the screen and keyboard respectively, Tasks of
teams are entered from the keyboard itself. Each job
may require running a lot of different resources
such as processors, memory, time (and the usual
CPU). You may also need storage space. With the
help of a resource manager, we can set a limit for
each resource. If the limit is not set for any
resource, it is assumed to be infinity algorithm:
1. Algorithm is determined by the type of resources
used by this task and the number and priority of the
task.

2. Assignments are distributed by stages and
arranged in order of priority.
3. Management Service are then sent to an
executable script. Binding to an existing reservation
is made by ASL, the reservation of resources at this
point should already be done. Resources can be of
the following species: the number of processors,
memory, required software, virtual memory, time
and so on…
Resource management in computing systems deals
with the allocation of available system resources
to the various tasks ready to be executed. This is a
process that significantly affects the overall
performance of the system. Typically, resource
allocation algorithms take as input a list of tasks or
processes that are ready to be executed at some
particular time as provided by a system scheduler.
The scheduler considers a task flow graph in
order to resolve task dependencies.
Traditionally, resource allocation in multiprocessor
systems concentrates on the allocation of software
tasks to each of the processor nodes (usually
individual processors with local and memory),
such that the overall performance of the system
is maximized. This is a well-known problem
with a large amount of research contributions
towards efficient utilization of the massive
hardware parallelism available in such systems
using various exact and heuristic approaches. In a
case of many core systems, important on-chip
constraints such as limited buffer capacity for on-
chip communication, on-chip network congestion,
power density, and limited must be used.
In an effort to integrate the emerging challenges,
I/O bandwidth necessitate the evolution of
existing algorithms or even the development of
new algorithms, In such dense systems, efficient
workload distribution could benefit from real-
time system information knowledge such as the
status/utilization of each core and, additionally,
the status of the interconnection network.

S.J.I.T.N Vol .2 (2014) 32

Interconnect-associated delays are an important
factor in efficient decision-making and the problem
is further more complicated while controlling
Memory is related to traffic, such as cache misses
and synchronization data is taken into
consideration. Whilst dealing with a similar
problem, research looks at general-purpose systems
(CMPs) from a slightly different viewpoint , when
compared to application-specific systems
(MPSoCs). General purpose systems face runtime
uncertainties where cache misses, data hazards, and
unpredictable interconnect modeling can
potentially alter the expected execution time of
one task significantly. On the other hand,
application-specific many core systems (typically
heterogeneous MPSoCs) usually deal with
predictable schedules and execution times.
Consequently, MPSoC-related research mostly
focuses on finding optimal, static, design time
allocation, where the mapping of tasks to the
cores can either take place as part of the
compilation, or mapped prior to execution on the
processor cores. However, as the number of cores
increases, MPSoCs are expected to contain groups
of cores, where all cores in a group are of the same
type. Any core inside a group can potentially
execute some task, shifting the task allocation
process towards finding the best core that can
execute one type of task among the cores in a
group. As a result, allocation in future massively
parallel CMPs and MPSoCs is expected to face
similar issues and should not necessarily be
treated independently.

Bidding Algorithms

This work uses the concept of bidding to decide
how to allocate processes to the various cores of the
system. Bidding algorithms have been widely
used to solve several optimization problems as
part of auction-based algorithms. Typically, for a
specific number of items, there are n possible
“bidders”, with each “bidder” placing a bid in an
attempt to “buy” a number of items. Usually, the
highest bidder claims one or more items, and

bidding continues until there are no more items
or no more bidders. Such algorithms can also
be used in more complex scenarios, under
various constraints. Bidding-based algorithms
traditionally offer load balancing across
distributed systems and networks, optimizing
performance and utilization. In the proposed
algorithms, cores actively decide based on their
workload and utilization of their related
communication resources (on-chip network)
whether, and to what extent, to bid for (request)
additional process (task) assignment. Each core (or
group of cores), computes its bid independently and
sends it, through the on-chip network, to the system
level on-chip allocation engine. Transferring this
decision to the cores is done with minimal
overhead; it also improves flexibility and scalability
of the system. Subsequently, the allocation engine
decides where to assign the list of pending
processes/tasks dispatched by the system scheduler,
based on the placed bids.

In this work, we present two different simple
bidding-based algorithms for performing on-chip
resource allocation in a many core system, where
processes are the “auctioned” items, and a
processor core (or a group of cores) places its
“bid” based on its status (or the status of each core
in the group). since we are targeting hardware
implementation of the algorithm where speed and
simplicity are critical factors, We are aiming for a
simple and fast bidding based solution, rather
than an optimal one, Still, the obtained
experimental results demonstrate significant
performance improvement and highly balanced
utilization among the various cores. The presented
algorithms improve the system’s performance when
compared to a standard (static) allocation
mechanism such as round robin implemented in
hardware. We use round robin as a hardware
reference algorithm in evaluating our optimization
algorithms, due to its simplicity to be implemented

S.J.I.T.N Vol .2 (2014) 32

Interconnect-associated delays are an important
factor in efficient decision-making and the problem
is further more complicated while controlling
Memory is related to traffic, such as cache misses
and synchronization data is taken into
consideration. Whilst dealing with a similar
problem, research looks at general-purpose systems
(CMPs) from a slightly different viewpoint , when
compared to application-specific systems
(MPSoCs). General purpose systems face runtime
uncertainties where cache misses, data hazards, and
unpredictable interconnect modeling can
potentially alter the expected execution time of
one task significantly. On the other hand,
application-specific many core systems (typically
heterogeneous MPSoCs) usually deal with
predictable schedules and execution times.
Consequently, MPSoC-related research mostly
focuses on finding optimal, static, design time
allocation, where the mapping of tasks to the
cores can either take place as part of the
compilation, or mapped prior to execution on the
processor cores. However, as the number of cores
increases, MPSoCs are expected to contain groups
of cores, where all cores in a group are of the same
type. Any core inside a group can potentially
execute some task, shifting the task allocation
process towards finding the best core that can
execute one type of task among the cores in a
group. As a result, allocation in future massively
parallel CMPs and MPSoCs is expected to face
similar issues and should not necessarily be
treated independently.

Bidding Algorithms

This work uses the concept of bidding to decide
how to allocate processes to the various cores of the
system. Bidding algorithms have been widely
used to solve several optimization problems as
part of auction-based algorithms. Typically, for a
specific number of items, there are n possible
“bidders”, with each “bidder” placing a bid in an
attempt to “buy” a number of items. Usually, the
highest bidder claims one or more items, and

bidding continues until there are no more items
or no more bidders. Such algorithms can also
be used in more complex scenarios, under
various constraints. Bidding-based algorithms
traditionally offer load balancing across
distributed systems and networks, optimizing
performance and utilization. In the proposed
algorithms, cores actively decide based on their
workload and utilization of their related
communication resources (on-chip network)
whether, and to what extent, to bid for (request)
additional process (task) assignment. Each core (or
group of cores), computes its bid independently and
sends it, through the on-chip network, to the system
level on-chip allocation engine. Transferring this
decision to the cores is done with minimal
overhead; it also improves flexibility and scalability
of the system. Subsequently, the allocation engine
decides where to assign the list of pending
processes/tasks dispatched by the system scheduler,
based on the placed bids.

In this work, we present two different simple
bidding-based algorithms for performing on-chip
resource allocation in a many core system, where
processes are the “auctioned” items, and a
processor core (or a group of cores) places its
“bid” based on its status (or the status of each core
in the group). since we are targeting hardware
implementation of the algorithm where speed and
simplicity are critical factors, We are aiming for a
simple and fast bidding based solution, rather
than an optimal one, Still, the obtained
experimental results demonstrate significant
performance improvement and highly balanced
utilization among the various cores. The presented
algorithms improve the system’s performance when
compared to a standard (static) allocation
mechanism such as round robin implemented in
hardware. We use round robin as a hardware
reference algorithm in evaluating our optimization
algorithms, due to its simplicity to be implemented

S.J.I.T.N Vol .2 (2014) 32

Interconnect-associated delays are an important
factor in efficient decision-making and the problem
is further more complicated while controlling
Memory is related to traffic, such as cache misses
and synchronization data is taken into
consideration. Whilst dealing with a similar
problem, research looks at general-purpose systems
(CMPs) from a slightly different viewpoint , when
compared to application-specific systems
(MPSoCs). General purpose systems face runtime
uncertainties where cache misses, data hazards, and
unpredictable interconnect modeling can
potentially alter the expected execution time of
one task significantly. On the other hand,
application-specific many core systems (typically
heterogeneous MPSoCs) usually deal with
predictable schedules and execution times.
Consequently, MPSoC-related research mostly
focuses on finding optimal, static, design time
allocation, where the mapping of tasks to the
cores can either take place as part of the
compilation, or mapped prior to execution on the
processor cores. However, as the number of cores
increases, MPSoCs are expected to contain groups
of cores, where all cores in a group are of the same
type. Any core inside a group can potentially
execute some task, shifting the task allocation
process towards finding the best core that can
execute one type of task among the cores in a
group. As a result, allocation in future massively
parallel CMPs and MPSoCs is expected to face
similar issues and should not necessarily be
treated independently.

Bidding Algorithms

This work uses the concept of bidding to decide
how to allocate processes to the various cores of the
system. Bidding algorithms have been widely
used to solve several optimization problems as
part of auction-based algorithms. Typically, for a
specific number of items, there are n possible
“bidders”, with each “bidder” placing a bid in an
attempt to “buy” a number of items. Usually, the
highest bidder claims one or more items, and

bidding continues until there are no more items
or no more bidders. Such algorithms can also
be used in more complex scenarios, under
various constraints. Bidding-based algorithms
traditionally offer load balancing across
distributed systems and networks, optimizing
performance and utilization. In the proposed
algorithms, cores actively decide based on their
workload and utilization of their related
communication resources (on-chip network)
whether, and to what extent, to bid for (request)
additional process (task) assignment. Each core (or
group of cores), computes its bid independently and
sends it, through the on-chip network, to the system
level on-chip allocation engine. Transferring this
decision to the cores is done with minimal
overhead; it also improves flexibility and scalability
of the system. Subsequently, the allocation engine
decides where to assign the list of pending
processes/tasks dispatched by the system scheduler,
based on the placed bids.

In this work, we present two different simple
bidding-based algorithms for performing on-chip
resource allocation in a many core system, where
processes are the “auctioned” items, and a
processor core (or a group of cores) places its
“bid” based on its status (or the status of each core
in the group). since we are targeting hardware
implementation of the algorithm where speed and
simplicity are critical factors, We are aiming for a
simple and fast bidding based solution, rather
than an optimal one, Still, the obtained
experimental results demonstrate significant
performance improvement and highly balanced
utilization among the various cores. The presented
algorithms improve the system’s performance when
compared to a standard (static) allocation
mechanism such as round robin implemented in
hardware. We use round robin as a hardware
reference algorithm in evaluating our optimization
algorithms, due to its simplicity to be implemented

S.J.I.T.N Vol .2 (2014) 33

(very low hardware overhead) as well as the lack of
other existing comparable solely hardware-based
solutions for the specific problem under
consideration.

The first algorithm, Necessary Resorting (NRS),
is simpler in terms of operations performed and,
therefore, faster. At some time instance T, it starts
by sorting the list of clusters C and the list of
processes P . Then, it binds the highest bidder
(cluster at the top of C) with the largest process (the
one at the top of P), the second highest bidder with
the second largest process, and so on. This
scenario tends to distribute the various
processes among the available clusters in such a
way that clusters with smaller, already allocated,
workload and/or smaller network traffic are
allocated to larger processes. Hence, workload
balancing is inherently achieved without being
explicitly targeted.
The second algorithm, Dynamic Resorting (DRS),
follows a similar rationale as the NRS algorithm
with the exception that a cluster’s bid is re-
calculated every time a process is bound to the
cluster and the list of available clusters in C is
resorted in order to reflect the allocation. Hence the
allocation is more dynamic in DRS than in NRS. In
contrast to NRS that binds at least one process to
each available cluster before considering binding
additional processes to a cluster, the DRS algorithm
can bind several processes to a cluster, and
possibly none to others, based on the
dynamically recomputed bids. Bidding, in this
context, offers several inherent benefits. Bid
computation is distributed inside the cores/clusters,
eliminating unnecessary traffic. Also, if the
clusters cannot respond due to network
congestion or them being busy, their bid value
is assumed to be zero and, hence, these clusters
are excluded from the allocation during the busy
intervals. The bidding process is scalable, since
an increase in the bidders can easily be
integrated by increasing the lists of bids and tasks as
well as using more than one allocation units (each
managing groups of clusters/cores). As the

network size grows, network delay, a more
important factor in large networks, is a linear
component of the bid. Similarly, core simplicity and
core clustering allow for hierarchical multilevel
allocation engines, which can take into
consideration more detailed intra-cluster conditions.

Application Of The Proposed Algorithm In A Cluster
Package Mpi / Mpich And Checking It More Efficiently
For Distribution To The Transportation Problem

The practical significance of the work lies in the
fact that the algorithm of job control was used to
expand the library mpich (for free licenses)
that is in the creation of the programming model
cluster, which includes the implementation of the
proposed algorithm. Using the library has been
developed, parallel program is found to support
program in the transportation problem based on the
method of Vogel (penalty) for the cluster network.
Execution was carried out on 4 machines with dual-
core Intel Core 2 Duo E6700 and 2 GB of RAM are
given in Table 1. All times are in seconds.
Comparative system performance while running the
example shown in Figure 1.
The abscissa in parentheses indicates the number of
processes. The graph shows that there is a slight
performance boost while running in an environment
MPI / MPICH_NEW. However, when the number
of processes from 20 to 40 increase in performance
,it becomes more significant (1.13 times faster when
calculating the matrix of size 1000x1000).

Conclusions
Thus, the algorithm was tested in a distributed job
to control problem on a cluster system MPI /
MPICH and MPI / MPICH _NEW. Tests showed
that the algorithm developed an efficient solution
for the selected class of distribution problems.

S.J.I.T.N Vol .2 (2014) 33

(very low hardware overhead) as well as the lack of
other existing comparable solely hardware-based
solutions for the specific problem under
consideration.

The first algorithm, Necessary Resorting (NRS),
is simpler in terms of operations performed and,
therefore, faster. At some time instance T, it starts
by sorting the list of clusters C and the list of
processes P . Then, it binds the highest bidder
(cluster at the top of C) with the largest process (the
one at the top of P), the second highest bidder with
the second largest process, and so on. This
scenario tends to distribute the various
processes among the available clusters in such a
way that clusters with smaller, already allocated,
workload and/or smaller network traffic are
allocated to larger processes. Hence, workload
balancing is inherently achieved without being
explicitly targeted.
The second algorithm, Dynamic Resorting (DRS),
follows a similar rationale as the NRS algorithm
with the exception that a cluster’s bid is re-
calculated every time a process is bound to the
cluster and the list of available clusters in C is
resorted in order to reflect the allocation. Hence the
allocation is more dynamic in DRS than in NRS. In
contrast to NRS that binds at least one process to
each available cluster before considering binding
additional processes to a cluster, the DRS algorithm
can bind several processes to a cluster, and
possibly none to others, based on the
dynamically recomputed bids. Bidding, in this
context, offers several inherent benefits. Bid
computation is distributed inside the cores/clusters,
eliminating unnecessary traffic. Also, if the
clusters cannot respond due to network
congestion or them being busy, their bid value
is assumed to be zero and, hence, these clusters
are excluded from the allocation during the busy
intervals. The bidding process is scalable, since
an increase in the bidders can easily be
integrated by increasing the lists of bids and tasks as
well as using more than one allocation units (each
managing groups of clusters/cores). As the

network size grows, network delay, a more
important factor in large networks, is a linear
component of the bid. Similarly, core simplicity and
core clustering allow for hierarchical multilevel
allocation engines, which can take into
consideration more detailed intra-cluster conditions.

Application Of The Proposed Algorithm In A Cluster
Package Mpi / Mpich And Checking It More Efficiently
For Distribution To The Transportation Problem

The practical significance of the work lies in the
fact that the algorithm of job control was used to
expand the library mpich (for free licenses)
that is in the creation of the programming model
cluster, which includes the implementation of the
proposed algorithm. Using the library has been
developed, parallel program is found to support
program in the transportation problem based on the
method of Vogel (penalty) for the cluster network.
Execution was carried out on 4 machines with dual-
core Intel Core 2 Duo E6700 and 2 GB of RAM are
given in Table 1. All times are in seconds.
Comparative system performance while running the
example shown in Figure 1.
The abscissa in parentheses indicates the number of
processes. The graph shows that there is a slight
performance boost while running in an environment
MPI / MPICH_NEW. However, when the number
of processes from 20 to 40 increase in performance
,it becomes more significant (1.13 times faster when
calculating the matrix of size 1000x1000).

Conclusions
Thus, the algorithm was tested in a distributed job
to control problem on a cluster system MPI /
MPICH and MPI / MPICH _NEW. Tests showed
that the algorithm developed an efficient solution
for the selected class of distribution problems.

S.J.I.T.N Vol .2 (2014) 33

(very low hardware overhead) as well as the lack of
other existing comparable solely hardware-based
solutions for the specific problem under
consideration.

The first algorithm, Necessary Resorting (NRS),
is simpler in terms of operations performed and,
therefore, faster. At some time instance T, it starts
by sorting the list of clusters C and the list of
processes P . Then, it binds the highest bidder
(cluster at the top of C) with the largest process (the
one at the top of P), the second highest bidder with
the second largest process, and so on. This
scenario tends to distribute the various
processes among the available clusters in such a
way that clusters with smaller, already allocated,
workload and/or smaller network traffic are
allocated to larger processes. Hence, workload
balancing is inherently achieved without being
explicitly targeted.
The second algorithm, Dynamic Resorting (DRS),
follows a similar rationale as the NRS algorithm
with the exception that a cluster’s bid is re-
calculated every time a process is bound to the
cluster and the list of available clusters in C is
resorted in order to reflect the allocation. Hence the
allocation is more dynamic in DRS than in NRS. In
contrast to NRS that binds at least one process to
each available cluster before considering binding
additional processes to a cluster, the DRS algorithm
can bind several processes to a cluster, and
possibly none to others, based on the
dynamically recomputed bids. Bidding, in this
context, offers several inherent benefits. Bid
computation is distributed inside the cores/clusters,
eliminating unnecessary traffic. Also, if the
clusters cannot respond due to network
congestion or them being busy, their bid value
is assumed to be zero and, hence, these clusters
are excluded from the allocation during the busy
intervals. The bidding process is scalable, since
an increase in the bidders can easily be
integrated by increasing the lists of bids and tasks as
well as using more than one allocation units (each
managing groups of clusters/cores). As the

network size grows, network delay, a more
important factor in large networks, is a linear
component of the bid. Similarly, core simplicity and
core clustering allow for hierarchical multilevel
allocation engines, which can take into
consideration more detailed intra-cluster conditions.

Application Of The Proposed Algorithm In A Cluster
Package Mpi / Mpich And Checking It More Efficiently
For Distribution To The Transportation Problem

The practical significance of the work lies in the
fact that the algorithm of job control was used to
expand the library mpich (for free licenses)
that is in the creation of the programming model
cluster, which includes the implementation of the
proposed algorithm. Using the library has been
developed, parallel program is found to support
program in the transportation problem based on the
method of Vogel (penalty) for the cluster network.
Execution was carried out on 4 machines with dual-
core Intel Core 2 Duo E6700 and 2 GB of RAM are
given in Table 1. All times are in seconds.
Comparative system performance while running the
example shown in Figure 1.
The abscissa in parentheses indicates the number of
processes. The graph shows that there is a slight
performance boost while running in an environment
MPI / MPICH_NEW. However, when the number
of processes from 20 to 40 increase in performance
,it becomes more significant (1.13 times faster when
calculating the matrix of size 1000x1000).

Conclusions
Thus, the algorithm was tested in a distributed job
to control problem on a cluster system MPI /
MPICH and MPI / MPICH _NEW. Tests showed
that the algorithm developed an efficient solution
for the selected class of distribution problems.

S.J.I.T.N Vol .2 (2014) 34

Table 1.Results of computational experiments on the algorithm proposed management jobs in the cluster model
of MPI / MPICH_NEW

Fig. 1. Graph of execution time in MPI environment before and after application of the
algorithm developed

References

[1]. AL-Khulaidi A. A. , Analysis of existing
packages in the cluster networks, N.N. Sadovou,
Journal Vestnik Don State Technical University,
Russia 2010.T.10.

[2]. Foster I., Kesselman C., Tuecke S. “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations”. International Journal of High
Performance Computing Applications, London.
[3]. Foster I., Kesselman C., J. Nick, Tuecke S.
“The Physiology of the cluster: An Open Grid
Services Architecture for Distributed Systems
Integration”.
http://www.globus.org/research/papers/ogsa.pdf

Dimension of tasks Number of processes Run-time parallel algorithm for finding the
support program (seconds)

Acceleration

MPI/MPICH MPI/MPICH_NEW
50x50 20 0,005 0,005 –
70x70 20 0,009 0,009 –

100x100 20 0,020 0,019 1,05
150x150 20 0,031 0,029 1,06
500x500 20 1,020 0,935 1,07
500x500 40 1,005 0,920 1,09

1000x1000 40 2,501 2,209 1,13

Dimension of tasks

Run-time, s

S.J.I.T.N Vol .2 (2014) 34

Table 1.Results of computational experiments on the algorithm proposed management jobs in the cluster model
of MPI / MPICH_NEW

Fig. 1. Graph of execution time in MPI environment before and after application of the
algorithm developed

References

[1]. AL-Khulaidi A. A. , Analysis of existing
packages in the cluster networks, N.N. Sadovou,
Journal Vestnik Don State Technical University,
Russia 2010.T.10.

[2]. Foster I., Kesselman C., Tuecke S. “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations”. International Journal of High
Performance Computing Applications, London.
[3]. Foster I., Kesselman C., J. Nick, Tuecke S.
“The Physiology of the cluster: An Open Grid
Services Architecture for Distributed Systems
Integration”.
http://www.globus.org/research/papers/ogsa.pdf

Dimension of tasks Number of processes Run-time parallel algorithm for finding the
support program (seconds)

Acceleration

MPI/MPICH MPI/MPICH_NEW
50x50 20 0,005 0,005 –
70x70 20 0,009 0,009 –

100x100 20 0,020 0,019 1,05
150x150 20 0,031 0,029 1,06
500x500 20 1,020 0,935 1,07
500x500 40 1,005 0,920 1,09

1000x1000 40 2,501 2,209 1,13

Dimension of tasks

Run-time, s

S.J.I.T.N Vol .2 (2014) 34

Table 1.Results of computational experiments on the algorithm proposed management jobs in the cluster model
of MPI / MPICH_NEW

Fig. 1. Graph of execution time in MPI environment before and after application of the
algorithm developed

References

[1]. AL-Khulaidi A. A. , Analysis of existing
packages in the cluster networks, N.N. Sadovou,
Journal Vestnik Don State Technical University,
Russia 2010.T.10.

[2]. Foster I., Kesselman C., Tuecke S. “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations”. International Journal of High
Performance Computing Applications, London.
[3]. Foster I., Kesselman C., J. Nick, Tuecke S.
“The Physiology of the cluster: An Open Grid
Services Architecture for Distributed Systems
Integration”.
http://www.globus.org/research/papers/ogsa.pdf

Dimension of tasks Number of processes Run-time parallel algorithm for finding the
support program (seconds)

Acceleration

MPI/MPICH MPI/MPICH_NEW
50x50 20 0,005 0,005 –
70x70 20 0,009 0,009 –

100x100 20 0,020 0,019 1,05
150x150 20 0,031 0,029 1,06
500x500 20 1,020 0,935 1,07
500x500 40 1,005 0,920 1,09

1000x1000 40 2,501 2,209 1,13

Dimension of tasks

Run-time, s

